
Philipp Krähenbühl, UT Austin

Checkpointing

Memory requirements

Training large models

• Without optimization:

• Model parameters: N

• Weights: N floats

• Gradients: N floats

• Momentum: N floats

• 2nd momentum (ADAM): N floats

• 16N bytes without counting activations

Weight (fp32)

Gradient (fp32)

Momentum 1 (fp32)

Momentum 2 (fp32)

4N bytes

4N bytes

4N bytes

4N bytes

Memory requirements

Training Q-Galore models

• Q-Galore

• Model parameters: N, Galore parameters
M

• Weights: N int8

• Momentum: M int8

• 2nd momentum (ADAM): M int8

• Projection: int4

• N+2M + |projection| bytes without activations

Weight (int8)N bytes

Momentum 1
(int8)

Momentum 2
(int8)

M bytes

M bytes

[1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients. 2024

Memory requirements

Training QLoRA models

• QLoRA

• Model parameters: N, LoRA param M

• Weights: N int4, M floats

• Gradients: M floats

• Momentum: M floats

• 2nd momentum (ADAM): M floats

• N+16M bytes without activations

• M often ~1-5% of N

1
2

Weight (int4)N bytes
1
2 LoRA (fp32)

Gradient
(fp32)

Momentum 1
(fp32)

Momentum 2
(fp32)

4M bytes

4M bytes

4M bytes

4M bytes

A closer look

Backpropagation

• Linear layer

• Gradient:

• Backprop:

• Nonlinear layer

• Backprop:

y = W⊤x

∂
∂W

y = xy⊤

∂
∂x

y = W⊤

y = f(x)

∂
∂x

y = ∇f(x)

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

A closer look

Backpropagation

• Forward

• Store activation

• Backprop of non-linear layers

• Weight gradient of linear layers

• Backward

• Compute gradient (allocate memory)

• Discard activation (free memory)

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

Backpropagation

• Forward only

• Memory efficient

• Reuse memory buffers

• with torch.no_grad():

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

Without storing activations

Backpropagation

• Forward

• with torch.no_grad():

• Backward

• Recompute activation

• Compute gradient (allocate memory)

• Discard activation (free memory)

• No additional memory!

• Very slow D forward passes for one backward

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

…

Activation checkpointing

• Forward

• with torch.no_grad():

• In blocks

• Backward

• Recompute activation

• Within block

• Compute gradient (allocate memory)

• Discard activation (free memory)

• Ideally sqrt(D) less memory

• 2x forward passes for one backward

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

…

[1] Tianqi Chen, et al. Training deep nets with sublinear memory cost. 2016

Activation checkpointing in
practice

• Practical considerations

• Need to control randomness

• First and second forward should
match

• Need to wrap model

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable, Function
import torch.utils.checkpoint as checkpoint

class ConvBNReLU(nn.Module):

 def __init__(self, in_planes, out_planes):

 super(ConvBNReLU, self).__init__()
 self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
 self.bn1 = nn.BatchNorm2d(out_planes)
 self.relu1 = nn.ReLU(inplace=True)

 def forward(self, x):
 out = self.relu1(self.bn1(self.conv1(x)))
 return out

class DummyNet(nn.Module):
 def __init__(self):
 super(DummyNet, self).__init__()
 self.features = nn.Sequential(OrderedDict([
 ('conv1', nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)),
 ('bn1', nn.BatchNorm2d(16)),
 ('relu1', nn.ReLU(inplace=True)),
]))

 # The module that we want to checkpoint
 self.module = ConvBNReLU(16, 64)

 self.final_module = ConvBNReLU(64, 64)

 def forward(self, x):
 out = self.features(x)
 out = checkpoint.checkpoint(self.module, out)
 out = self.final_module(out)
 return out

[1] Tianqi Chen, et al. Training deep nets with sublinear memory cost. 2016
[2] Priya Goyal, https://github.com/prigoyal/pytorch_memonger

https://github.com/prigoyal/pytorch_memonger

Offloading

• Certain inputs (i.e. text) have variable length

• Variable memory use for activation
checkpoints

• “Unlucky” batches will blow up GPU
memory

• Solution

• Offload to CPU if needed

• CUDA does this automatically with unified
memory architecture (tricky in PyTorch)

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

2 Background
Block-wise k-bit Quantization Quantization is the process of discretizing an input from a rep-
resentation that holds more information to a representation with less information. It often means
taking a data type with more bits and converting it to fewer bits, for example from 32-bit floats to
8-bit Integers. To ensure that the entire range of the low-bit data type is used, the input data type is
commonly rescaled into the target data type range through normalization by the absolute maximum
of the input elements, which are usually structured as a tensor. For example, quantizing a 32-bit
Floating Point (FP32) tensor into a Int8 tensor with range [�127, 127]:

XInt8 = round
✓

127

absmax(XFP32)
XFP32

◆
= round(cFP32 ·XFP32), (1)

where c is the quantization constant or quantization scale. Dequantization is the inverse:

dequant(cFP32,XInt8) =
XInt8

cFP32 = XFP32 (2)

The problem with this approach is that if a large magnitude value (i.e., an outlier) occurs in the input
tensor, then the quantization bins—certain bit combinations—are not utilized well with few or no
numbers quantized in some bins. To prevent the outlier issue, a common approach is to chunk the
input tensor into blocks that are independently quantized, each with their own quantization constant c.
This can be formalized as follows: We chunk the input tensor X 2 Rb⇥h into n contiguous blocks of
size B by flattening the input tensor and slicing the linear segment into n = (b⇥ h)/B blocks. We
quantize these blocks independently with Equation 1 to create a quantized tensor and n quantization
constants ci.

Low-rank Adapters Low-rank Adapter (LoRA) finetuning [28] is a method that reduces memory
requirements by using a small set of trainable parameters, often termed adapters, while not updating
the full model parameters which remain fixed. Gradients during stochastic gradient descent are
passed through the fixed pretrained model weights to the adapter, which is updated to optimize the
loss function. LoRA augments a linear projection through an additional factorized projection. Given
a projection XW = Y with X 2 Rb⇥h, W 2 Rh⇥o LoRA computes:

Y = XW + sXL1L2, (3)

where L1 2 Rh⇥r and L2 2 Rr⇥o, and s is a scalar.

Memory Requirement of Parameter-Efficient Finetuning One important point of discussion is
the memory requirement of LoRA during training both in terms of the number and size of adapters
used. Since the memory footprint of LoRA is so minimal, we can use more adapters to improve
performance without significantly increasing the total memory used. While LoRA was designed as a

3

[1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients. 2024

Memory requirements

Memory efficient model training

• QLoRA

• Model parameters: N, LoRA param M

• Weights: N int4, M floats

• Gradients: M floats

• Momentum: M floats

• 2nd momentum (ADAM): M floats

• N+16M bytes; M often ~1-5% of N

• gradient checkpoint; two forward passes

1
2

O(D)

Weight (int4)N bytes
1
2 LoRA (fp32)

Gradient
(fp32)

Momentum 1
(fp32)

Momentum 2
(fp32)

4M bytes

4M bytes

4M bytes

4M bytes

MLP

Attention

MLP

Attention

MLP

Attention

Embedding

Classifier

Input: x

Loss: ℓ

Forward Backward

…

References

• [1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-
Adaptive Low-Rank Gradients. 2024. (link)

• [2] Tianqi Chen, et al. Training deep nets with sublinear memory cost. 2016. (link)

• [3] Priya Goyal, https://github.com/prigoyal/pytorch_memonger

https://arxiv.org/abs/2407.08296
https://arxiv.org/abs/1604.06174
https://github.com/prigoyal/pytorch_memonger

