Checkpointing

Philipp Krähenbühl, UT Austin

Training large models Memory requirements

- Without optimization:
 - Model parameters: N
 - Weights: N floats
 - Gradients: N floats
 - Momentum: N floats
 - 2nd momentum (ADAM): N floats
- 16N bytes without counting activations

4N bytes	Weight (fp32)
4N bytes	Gradient (fp32)
4N bytes	Momentum 1 (fp32)
4N bytes	Momentum 2 (fp32)

Training Q-Galore models

Memory requirements

- Q-Galore
 - Model parameters: N, Galore parameters Μ
 - Weights: N int8
 - Momentum: M int8
 - 2nd momentum (ADAM): M int8
 - Projection: int4
- N+2M + projection bytes without activations

[1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients. 2024

N bytes

Weight (int8)

Momentum M bytes (int8) Momentum 2 M bytes (int8)

Training QLoRA models

Memory requirements

- QLoRA
 - Model parameters: N, LoRA param M
 - Weights: N int4, M floats
 - Gradients: M floats
 - Momentum: M floats
 - 2nd momentum (ADAM): M floats
- $\frac{1}{2}$ N+16M bytes without activations
- M often ~1-5% of N

LoRA (4M bytes	Weight (int4)	$\frac{1}{2}$ N bytes
Grad (fp3	4M bytes		
Momer (fp3	4M bytes		
Momer (fp3	4M bytes		

Backpropagation A closer look

• Linear layer $y = W^{\mathsf{T}} x$

• Gradient:
$$\frac{\partial}{\partial W} y = xy^{\mathsf{T}}$$

• Backprop:
$$\frac{\partial}{\partial x} y = W^{\mathsf{T}}$$

• Nonlinear layer y = f(x)

• Backprop:
$$\frac{\partial}{\partial x} y = \nabla f(x)$$

Backpropagation A closer look

- Forward
 - Store activation
 - Backprop of non-linear layers
 - Weight gradient of linear layers
- Backward
 - Compute gradient (allocate memory)
 - Discard activation (free memory)

Backpropagation

- Forward only
 - Memory efficient
 - Reuse memory buffers
 - with torch.no_grad():

Input: x

Backpropagation Without storing activations

- Forward
 - with torch.no_grad():
- Backward
 - Recompute activation
 - Compute gradient (allocate memory)
 - Discard activation (free memory)
- No additional memory!
- Very slow D forward passes for one backward

Activation checkpointing

- Forward
 - with torch.no_grad():
 - In blocks
- Backward
 - Recompute activation
 - Within block
 - Compute gradient (allocate memory)
 - Discard activation (free memory)
- Ideally sqrt(D) less memory
- 2x forward passes for one backward

[1] Tianqi Chen, et al. Training deep nets with sublinear memory cost. 2016

Forward

Activation checkpointing in practice

- Practical considerations
 - Need to control randomness
 - First and second forward should match
 - Need to wrap model

[1] Tianqi Chen, et al. Training deep nets with sublinear memory cost. 2016 [2] Priya Goyal, <u>https://github.com/prigoyal/pytorch_memonger</u>

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable, Function
import torch.utils.checkpoint as checkpoint
class ConvBNReLU(nn.Module):
    def init (self, in planes, out planes):
        super(ConvBNReLU, self).__init__()
       self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
       self.bn1 = nn.BatchNorm2d(out planes)
        self.relu1 = nn.ReLU(inplace=True)
    def forward(self, x):
       out = self.relu1(self.bn1(self.conv1(x)))
        return out
class DummyNet(nn.Module):
    def init (self):
        super(DummyNet, self).__init__()
       self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)),
            ('bn1', nn.BatchNorm2d(16)),
            ('relu1', nn.ReLU(inplace=True)),
       ]))
        # The module that we want to checkpoint
       self.module = ConvBNReLU(16, 64)
        self.final_module = ConvBNReLU(64, 64)
    def forward(self, x):
        out = self.features(x)
       out = checkpoint.checkpoint(self.module, out)
       out = self.final_module(out)
        return out
```

Offloading

- Certain inputs (i.e. text) have variable length
 - Variable memory use for activation checkpoints
 - "Unlucky" batches will blow up GPU memory
- Solution
 - Offload to CPU if needed
 - CUDA does this automatically with unified memory architecture (tricky in PyTorch)

[1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients. 2024

Memory efficient model training

Memory requirements

- QLoRA
 - Model parameters: N, LoRA param M
 - Weights: N int4, M floats
 - Gradients: M floats
 - Momentum: M floats
 - 2nd momentum (ADAM): M floats
- $\frac{1}{2}$ N+16M bytes; M often ~1-5% of N
- $O(\sqrt{D})$ gradient checkpoint; two forward passes

References

- [1] Zhenyu Zhang, et al. Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients. 2024. (link)
- [2] Tiangi Chen, et al. Training deep nets with sublinear memory cost. 2016. (link)
- [3] Priya Goyal, <u>https://github.com/prigoyal/pytorch_memonger</u>