Quantization

Philipp Krähenbühl, UT Austin

Training large models Memory requirements

- Without optimization
 - Model parameters: N
 - Weights: N floats
 - Gradients: N floats
 - Momentum: N floats
 - 2nd momentum (ADAM): N floats
- 16N bytes without counting activations

4N bytes	Weight (fp32)
4N bytes	Gradient (fp32)
4N bytes	Momentum 1 (fp32)
4N bytes	Momentum 2 (fp32)

Inference in large models

Memory requirements

- Without optimization
 - Model parameters: N
 - Weights: N floats
- 4N bytes without counting activations
- 8B parameter model (i.e. llama 3.1)
 - 32GB of memory for just weights

[1] <u>https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Data_Center_GPUs</u>

4N bytes

		Launch 🜩	Core 🜩	Memory				
Model 🜩	Micro- architecture			Bus type [≑]	Bus width \$ (bit)	Size (GB)	Clock (MT/s) ≑	Bar ((
A100 GPU accelerator (PCIe card) ^{[44][45]}	Ampere	May 14, 2020 ^[46]	1× GA100- 883AA- A1	HBM2	5,120	40 or 80	1,215	
A40 GPU accelerator (PCIe card) ^[43]	Ampere	October 5, 2020	1× GA102	GDDR6	384	48	7,248	
L40 GPU accelerator ^[50]	Ada Lovelace	October 13, 2022	1× AD102 ^[51]	GDDR6	384	48	2,250	
H100 GPU accelerator (PCIe card) ^[47]	Hopper	March 22, 2022 ^[48]	1× GH100 ^[49]	HBM2E	5120	80	1,000	
H100 GPU accelerator (SXM card)	Hopper	March 22, 2022 ^[48]	1× GH100 ^[49]	НВМЗ	5,120	80	1,500	

Inference in large models

Memory requirements

- Without optimization
 - Model parameters: N
 - Weights: N bfloat16
- 4N bytes without counting activations
- 8B parameter model (i.e. llama 3.1)
 - 16GB of memory for just weights

Image credit: Wikipedia

2N bytes

Weight (bf16)

float32

float32				
Sign	1 bit			
Exponent	8 bit			
Mantissa	23 bit			
Precision (relative)	1E-07			
Max value	3E+38			
Min value (normal)	1.7E-38			

Precision (relative) = $\frac{x_2 - x_1}{x_1}$ where x_2 is smallest value $x_2 > x_1$

Bfloat16

Bfloat16				
Sign	1 bit			
Exponent	8 bit			
Mantissa	7 bit			
Precision (relative)	7.8E-03			
Max value	3E+38			
Min value (normal)	1.7E-38			

Float8				
Sign	1 bit			
Exponent	4 bit			
Mantissa	3 bit			
Precision (relative)	0.125			
Max value	240			
Min value (normal)	0.015625			

S	Exponent				Fro	acti	on	
	(4 bits)				(3		3 bits)	
0	0	1	1	1	0	1	0	
7	6	(bit ir	ndex)	3	2		0	

	000	001	010	011	100	101	110	
0 0000	0	0.001953125	0.00390625	0.005859375	0.0078125	0.009765625	0.01171875	0.0
0 0001	0.015625	0.017578125	0.01953125	0.021484375	0.0234375	0.025390625	0.02734375	0.0
0 0010	0.03125	0.03515625	0.0390625	0.04296875	0.046875	0.05078125	0.0546875	О
0 0011	0.0625	0.0703125	0.078125	0.0859375	0.09375	0.1015625	0.109375	
0 0100	0.125	0.140625	0.15625	0.171875	0.1875	0.203125	0.21875	
0 0101	0.25	0.28125	0.3125	0.34375	0.375	0.40625	0.4375	
0 0110	0.5	0.5625	0.625	0.6875	0.75	0.8125	0.875	
0 0111	1	1.125	1.25	1.375	1.5	1.625	1.75	
0 1000	2	2.25	2.5	2.75	3	3.25	3.5	
0 1001	4	4.5	5	5.5	6	6.5	7	
0 1010	8	9	10	11	12	13	14	
0 1011	16	18	20	22	24	26	28	
0 1100	32	36	40	44	48	52	56	
0 1101	64	72	80	88	96	104	112	
0 1110	128	144	160	176	192	208	224	
0 1111	Inf	NaN	NaN	NaN	NaN	NaN	NaN	

Float8				
Sign	1 bit			
Exponent	4 bit			
Mantissa	3 bit			
Precision (relative)	0.125			
Max value	240			
Min value (normal)	0.015625			

Largest weight

Smallest weight

Largest gradient

Smallest gradient

Largest activation

Smallest activation

Float4				
Sign	1 bit			
Exponent	4 bit			
Mantissa	3 bit			
Precision (relative)	0.125			
Max value	240			
Min value (normal)	0.015625			

S	Expo	Frac.	
	(2 k	(1 bit)	
0	0	1	0
3	2	1	0

	0 0	0 1	1 0	1 1
00	0	0.5	0	-0.5
01 	1	1.5	-1	-1.5
10 	2	3	-2	-3
11	Inf	NaN	–Inf	NaN

Float4	
Sign	1 bit
Exponent	4 bit
Mantissa	3 bit
Precision (relative)	0.125
Max value	240
Min value (normal)	0.015625

Largest weight

Smallest weight

Largest gradient

Smallest gradient

Largest activation

Smallest activation

S	Expo	onent	Frac.
	(2 k	oits)	(1 bit)
0	0	1	\cap
	Ŭ		U

Integer scale quantization

• Find
$$T = \max_i |W_i|$$

• For K-bit integer

$$Q_i = \underset{q}{\operatorname{argmin}} \left| \frac{W_i}{T} (2^{K-1} - 1) - q \right|$$
for any K-bit signed integer q

for any K-bit signed integer q

$$Q_i = round\left(\frac{W_i}{T}(2^{K-1}-1)\right)$$

Integer scale quantization

Llama 3.1 8b

Largest weight

Smallest weight

Largest gradient

Smallest gradient

Largest activation

Smallest activation

Integer affine quantization

- Find $A = \min_{i} |W_i|$, $B = \max_{i} |W_i|$
- For K-bit integer

$$Q_i = \underset{q}{\operatorname{argmin}} \left| \frac{W_i - A}{B - A} (2^K - 1) - q \right|$$

for any K-bit unsigned integer q

$$Q_i = round\left(\frac{W_i - A}{B - A}(2^K - 1)\right)$$

Integer affine quantization

$$B - A$$

•
$$2^{K} - 1$$

• Weights:
$$\frac{NK}{8}$$
 + 4 bytes

Llama 3.1 8b

Largest weight

Smallest weight

Largest gradient

Smallest gradient

Largest activation

Smallest activation

Blockwise Quantization

- Separate quantization constant T, A, B for a block of S weights

• Scale:
$$\frac{NK}{8} + 2\frac{N}{S}$$
 bytes

$$\frac{16}{S}$$
 extra bits per parameters

• Affine:
$$\frac{NK}{8} + 4\frac{N}{S}$$
 bytes

$$\frac{32}{S}$$
 extra bits per parameters

[1] Tim Dettmers, et al. 8-bit optimizers via block-wise quantization. 2022

Double Quantization

• Let's quantize the quantization factors T, A, B

• Scale:
$$\frac{NK}{8} + \frac{NK}{8S} + 2$$
 bytes

 $\frac{K}{S}$ extra bits per parameters

• Affine:
$$\frac{NK}{8} + \frac{2NK}{8S} + 4$$
 bytes

 $\frac{2K}{S}$ extra bits per parameters

[1] Tim Dettmers, et al. QLoRA: Efficient Finetuning of Quantized LLMs. 2023

Beyond Linear Quantization

- 8-Bit Approximations for Parallelism in Deep Learning : <u>https://arxiv.org/abs/</u> 1511.04561
- SqueezeLLM: <u>https://arxiv.org/abs/</u> <u>2306.07629</u>
- Extreme Compression of Large Language
 Models via Additive Quantization: <u>https://</u>
 <u>arxiv.org/abs/2401.06118</u>
- PV-Tuning: <u>https://arxiv.org/abs/</u> 2405.14852

8-bit Adam

- Quantize 1st and 2nd momentum in Adam
 - 1st momentum: int8
 - 2nd momentum: uint8
 - Non-linear quantization
- Requires "stable" embeddings for LLMs
 - 32-bit optimizer states, normalizations

[1] Tim Dettmers, et al. 8-bit optimizers via block-wise quantization. 2022

Stochastic rounding How to train with quantized weights?

- Deterministic rounding $Q_i = round \left(\frac{W_i}{T}(2^{K-1} 1)\right)$
 - Works only if update is largest than quantization
- Stochastic rounding $Q_i = sround\left(\frac{W_i}{T}(2^{K-1}-1)\right)$

[1] Hao Li, et al. Training Quantized Nets: A Deeper Understanding. 2017

sround (x) =
$$\begin{cases} \lfloor x \rfloor + 1 & \text{with } p \le x - \lfloor x \rfloor \\ \lfloor x \rfloor & \text{otherwise} \end{cases}$$

E[round(x)] = round(x)E[sround(x)] = x

How low can we go?

- GPT-style LLM can store about 2 bits of information per parameter
 - Under ideal conditions
- 4 bits in practice
 - Only after training!

[1] Zeyuan Allen-Zhu, et al. Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws. 2024

Training large models Memory requirements

- Without optimization:
 - Model parameters: N
 - Weights: N floats
 - Gradients: N floats
 - Momentum: N floats
 - 2nd momentum (ADAM): N floats
- 16N bytes without counting activations

4N bytes	Weight (fp32)
4N bytes	Gradient (fp32)
4N bytes	Momentum 1 (fp32)
4N bytes	Momentum 2 (fp32)

Training large models Memory requirements

- Quantization:
 - Model parameters: N
 - Weights: N floats/bfloat16
 - Gradients: N floats/bfloat16
 - Momentum: N uint8
 - 2nd momentum (ADAM): N uint8
- 6N bytes without counting activations

2N bytes	Weight (bf16)
2N bytes	Gradient (bf16)
N bytes	Momentum 1 (int8)
N bytes	Momentum 2 (int8)

Inference in large models

Memory requirements

- Quantization:
 - Model parameters: N
 - Weights: N int4/int8

 $-\frac{1}{2}$ N bytes without counting activations

 $\frac{1}{2}$ N bytes

Weight (int4)

References

- [1] Tim Dettmers, et al. 8-bit optimizers via block-wise quantization. 2022. (link)
- [2] Tim Dettmers, et al. QLoRA: Efficient Finetuning of Quantized LLMs. 2023. (link)
- [3] Hao Li, et al. Training Quantized Nets: A Deeper Understanding. 2017. (<u>link</u>)
- [4] Zeyuan Allen-Zhu, et al. Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws. 2024. (link)
- [5] Tim Dettmers. 8-bit approximations for parallelism in deep learning. 2015 (link)
- [6] Sehoon Kim, et al. SqueezeLLM: Dense-and-Sparse Quantization. 2024 (link)
- [7] Vage Egiazarian, et al. Extreme Compression of Large Language Models via Additive Quantization. 2024 (link)
- [8] Vladimir Malinovskii, et al. PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression. 2024 (<u>link</u>)