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CLIP as a VLM

• Clip maps 

• Images to text 

• Text to images 

• Primitive image and text models 

• No dialogue



Unified-IO

• Tokenize everything 

• Image, Text, Sparse (few numbers), 
Dense (depth maps etc) 

• Image, Dense: VQ-GAN 

• Text: SentencePiece  

• Sparse: 1000 special tokens 
(coordinates)

Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks, Lu etal 2022



Unified-IO

• Everything is sequence prediction (with 
1D or 2D positional embeddings) 

• Unsupervised pre-training of vision and 
language inputs (masked prediction) 

• Fine-tune (train) on 95 unified datasets

Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks, Lu etal 2022



Flamingo

• One of first big VLM 

• Based on Chinchilla 

• Frozen  vision model spliced in (Gated 
X-Attn) 

• Multi-image support 

• Masked attention only to preceding 
image

Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac etal 2022



Flamingo

• Started zero-shot eval trend 

• Good results on VQA 

• Under VQA metrics

Flamingo: a Visual Language Model for Few-Shot Learning, Alayrac etal 2022



BLIP

• One network for 3 tasks 

• CLIP-style embeddings (ITC) 

• Image-language matching (ITM) 

• Language modeling / Captioning 
(LM) 

• Different structure, shared weights 
(except SA)

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation, Li etal 2022



BLIP

• Pre-Training 

• Image captioning data (COCO etal) 

• CapFilt 

• Use ITM, LM fine-tuned separately on 
COCO 

• Clean up web-scale image-text data 

• Create new captions (LM) 

• Filter new + original captions (ITM)

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation, Li etal 2022

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Method Pre-train
#Images

NoCaps validation COCO Caption
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

Enc-Dec (Changpinyo et al., 2021) 15M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1 - 110.9
VinVL† (Zhang et al., 2021) 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
LEMONbase† (Hu et al., 2021) 12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8 - -
LEMONbase† (Hu et al., 2021) 200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1 40.3 133.3
BLIP 14M 111.3 15.1 104.5 14.4 102.4 13.7 105.1 14.4 38.6 129.7
BLIP 129M 109.1 14.8 105.8 14.4 105.7 13.7 106.3 14.3 39.4 131.4
BLIPCapFilt-L 129M 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7 39.7 133.3

LEMONlarge† (Hu et al., 2021) 200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0 40.6 135.7
SimVLMhuge (Wang et al., 2021) 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
BLIPViT-L 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7

Table 7. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. All methods optimize the cross-
entropy loss during finetuning. C: CIDEr, S: SPICE, B@4: BLEU@4. BLIPCapFilt-L is pre-trained on a dataset bootstrapped by captioner
and filter with ViT-L. VinVL† and LEMON† require an object detector pre-trained on 2.5M images with human-annotated bounding
boxes and high resolution (800⇥1333) input images. SimVLMhuge uses 13⇥ more training data and a larger vision backbone than ViT-L.
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Figure 5. Model architecture for the downstream tasks. Q: ques-
tion; C: caption; QA: question-answer pair.

200M images. Note that LEMON requires a computational-
heavy pre-trained object detector and higher resolution
(800⇥1333) input images, leading to substantially slower
inference time than the detector-free BLIP which uses lower
resolution (384⇥384) input images.

5.3. Visual Question Answering (VQA)
VQA (Antol et al., 2015) requires the model to predict an an-
swer given an image and a question. Instead of formulating
VQA as a multi-answer classification task (Chen et al., 2020;

Method Pre-train
#Images

VQA NLVR2

test-dev test-std dev test-P

LXMERT 180K 72.42 72.54 74.90 74.50
UNITER 4M 72.70 72.91 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 76.37 77.32
VILLA 4M 73.59 73.67 78.39 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04 82.55 83.14
SimVLMbase† 1.8B 77.87 78.14 81.72 81.77

BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPCapFilt-L 129M 78.25 78.32 82.15 82.24

Table 8. Comparison with state-of-the-art methods on VQA and
NLVR2. ALBEF performs an extra pre-training step for NLVR2.
SimVLM† uses 13⇥ more training data and a larger vision back-
bone (ResNet+ViT) than BLIP.

Li et al., 2020), we follow Li et al. (2021a) and consider it as
an answer generation task, which enables open-ended VQA.
As shown in Figure 5(a), during finetuning, we rearrange the
pre-trained model, where an image-question is first encoded
into multimodal embeddings and then given to an answer
decoder. The VQA model is finetuned with the LM loss
using ground-truth answers as targets.

The results are shown in Table 8. Using 14M images,
BLIP outperforms ALBEF by +1.64% on the test set. Us-
ing 129M images, BLIP achieves better performance than
SimVLM which uses 13⇥ more pre-training data and a
larger vision backbone with an additional convolution stage.

5.4. Natural Language Visual Reasoning (NLVR2)
NLVR2 (Suhr et al., 2019) asks the model to predict whether
a sentence describes a pair of images. In order to enable rea-



BLIP v2

• Captioning -> Language modeling 

• Q-Former 

• Image-text embedder / tokenizer 

• Fed as context to LLM

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, Li etal 2023



BLIP v2

• Great results 

• Captioning 

• VQA 

• Retrieval 

• Early visual dialogues

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, Li etal 2023



InstructBLIP

• BLIP v2 architecture 

• Instruction tuning for visual reasoning 
benchmarks 

• 26 datasets (13 train) 

• Meticulously crafted instruction 
templates 

• Good results

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning, Dai etal 2023



InstructBLIP

• BLIP v2 architecture 

• Instruction tuning for visual reasoning 
benchmarks 

• 26 datasets (13 train) 

• Meticulously crafted instruction 
templates 

• Good results

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning, Dai etal 2023



LLAVA v1

• Instruction tuning (visual dialogue) data 
is scarce 

• Let’s use GPT4 (not GPT4-V) to create 
more data 

• Subset of CC3M (<600k) 

• Learn a single projection W on top of 
CLIP-VIT into Vicuna (llama2)

Visual Instruction Tuning, Liu etal 2023



LLAVA v1

• Stage 1 training: Adapter only 

• CC3M subset 

• GPT-4 ask question for caption 

• Stage 2 training: Adapter + LLM 

• GPT-4 data (ask GPT-4 to do QA using 
caption and box inputs) 

• ScienceQA 

• Quite easy to train (<1 day on 8 GPUs)

Visual Instruction Tuning, Liu etal 2023



Llava 1.5

• Better (higher resolution) image 
encoder 

• Larger LLM 

• More datasets 

• Still quite fast to train 

• <1 day on 8-GPUs

Improved Baselines with Visual Instruction Tuning, Liu etal 2023



AKA LLAVA-NEXT

LLAVA 1.6

• Higher resolution, More data (OCR), Better model, full model fine-tuning, still fast (1 day with 
32 A100s)



M3

• LLaVA at multiple granularities 

• Granularity Controller = 2x2 average 
pooling 

• Good results

Matryoshka Multimodal Models, Cai etal 2024

M3

…

In the heart of a bustling restaurant, a young girl finds solace at a 
table…

In the heart of a bustling restaurant, a young girl with vibrant hair is 
seated at a wooden table, her attention captivated by the camera…

In the heart of a bustling restaurant, a young girl with long, dark hair is 
the center of attention. She's dressed in a blue and white striped 
sweater,. … The table is adorned with a white paper bag, perhaps 
holding her meal. A blue Pepsi cup rests on the table …

X!!

X!"

X!#

Describe this image for me.

Figure 1: Matryoshka Multimodal Models. We enforce the coarser set of visual tokens XSi�1 to be
derived from the finer level of visual tokens XSi . As a result, the granularity of Matryoshka visual
tokens gradually changes in a controllable manner. The image is from MSCOCO [17] validation set.

Images and videos naturally exhibit a hierarchical structure from coarse to fine details, and our human
visual system has evolved to recognize visual information in this coarse to fine manner, as shown by
biologists and psychologists decades ago [18, 19]. Can we create a similar structure for LMMs, where
within one suite of model weights, the visual content tokens are organized into different scales of
granularities? Conceptually, our goal is to learn the visual tokens to have a nested structure, similar to
the Matryoshka Doll [20]. Matryoshka Representation Learning (MRL) [20] builds the Matryoshka
mechanism over a neural network’s representation vector, where each of the segments with various
feature dimensions is capable of handling tasks like classification or retrieval. However, for LMMs,
the inefficiency mainly comes from the number of tokens. Thus, inspired by, but different from MRL,
our work is motivated to build Matryoshka Multimodal Models upon the token length dimension, so
that we can flexibly adjust it.

Figure 2: MMBench evaluation results under M
3,

oracle under LLaVA-1.5-M3, LLaVA-1.5 with av-
erage pooling at inference time, LLaVA-1.5 sep-
arately trained for each specific scale, and other
methods. M

3 shows as least as good performance
as LLaVA trained for each specific scale. A large
gap exists between the oracle upperbound and
model’s actual performance on a specific scale.

Specifically, we propose M
3
: Matryoshka Multi-

modal Models, which enforces an LMM to learn
a hierarchy of visual representation granularities
at the token sequence level, instead of the feature
dimension level as in MRL [20]. With this repre-
sentation, at inference time, the visual granular-
ity can be flexibly controlled based on specific re-
quirements, e.g., to account for the input image’s
information density and efficiency constraints.
Our training process is simple and straightfor-
ward. During training, we encode the image into
M sets of visual tokens from coarse to fine, XSi ,
i = 1, · · · ,M , where the number of visual to-
kens gradually increases, i.e., |XSi�1 | < |XSi |.
And importantly, the visual tokens in a coarser
level are derived from the visual tokens in a finer
level, i.e., XSi�1 ⇢ XSi , 8i. In this way, the vi-
sual information in [XS1 ,XS2 , · · · ,XSM ] grad-
ually includes more fine-grained details. For
example, given a natural image as shown in Fig-
ure 1, XS1 includes high-level semantics such
as the restaurant and girl, while XSM includes
more details such as the Pepsi cup and white
paper bag. All other training settings, such as

the loss function and model architecture, are kept the same as LLaVA [2, 5, 4].

Our approach, M
3, introduces several novel properties and benefits for LMMs. First, our approach

can adaptively and efficiently represent visual content. Under one suite of weights, it generates
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Text Prompt
: Describe the 
scene for me. 

Large Language Model

: There are a group of people standing in the ski facility, 
some of them are holding a green flag while other are … 

Matryoshka Multimodal Models

CLIP Image 
Encoder

Granularity 
Controller

Figure 3: Architecture of our proposed Matryoshka Multimodal Models. The visual features
from CLIP are represented as several groups of coarse-to-fine visual tokens. At test time, users can
explicitly control the granularity of the visual features.

full context, thereby reducing the quadratic complexity of the vanilla attention operation. Another
notable method is Token Merging (ToMe) [14], which utilizes full attention but gradually reduces
the number of tokens in each transformer block by selecting the most representative tokens through
bipartite matching for the Vision Transformer (ViT). A recent work [44] further studies different
families of token reduction methods for ViT. However, prior approaches produce a single length
output per input image and do not offer multiple granularities over the reduced token sequence. Our
M

3 approach instead learns a multi-granularity, coarse-to-fine token representation within the same
model architecture and weights, enabling it to easily be adjusted to various computational or memory
constraints.

3 M3: Matryoshka Multimodal Models

Our goal is to learn a Large Multimodal Model (LMM) that represents visual content as nested sets
of visual tokens capturing information across multiple coarse-to-fine granularities, so that one can
explicitly control the visual granularity per test instance during inference. Here we introduce how we
learn a Matryoshka doll-like token sequence.

LMMs such as LLaVA [2] typically input a sequence of visual tokens as prefix tokens to the LLM
for visual-linguistic reasoning. The visual encoder from pretrained vision-language models, such as
CLIP [29] and SigLIP [45], is typically utilized to project the images into the set of visual tokens. In
particular, the CLIP visual encoder represents an input image I as an H ⇥W grid of visual tokens
XH⇥W , where each Xi 2 RC is a C dimensional feature vector. Our goal is to learn nested sets of
visual tokens [XS1 ,XS2 , · · · ,XSM ] which encode the visual information in a coarse-to-fine manner.
To this end, we enforce XSi ⇢ XSi+1 , 8i. Importantly, we do not introduce any new learnable
parameters to the LMM. We instead optimize the CLIP visual encoder to learn the nested visual
representation directly, and train the ensuing LLM to adapt to the learned nested set of tokens.

For ease of exposition, we consider CLIP-ViT-L-336 [29] as the visual encoder, where an image is en-
coded as 24⇥24 visual tokens (576 total). We create M sets of tokens e.g., |Si| 2 {1, 9, 36, 144, 576},
in which the visual tokens at the coarser level are derived directly from those at the finer level. Specif-
ically, given the initial 24⇥ 24 visual tokens, We sequentially apply 2⇥ 2 pooling with a stride 2,
resulting in 12 ⇥ 12, 6 ⇥ 6, and 3 ⇥ 3 visual tokens. Finally, we apply 3 ⇥ 3 pooling and get the
most condensed single visual token. In this way, the sets of Matryoshka visual tokens can gradually
preserve the spatial information in the original tokens while simultaneously forming a coarse-to-fine
nested representation.

We train M
3 by averaging the autoregressive next token prediction loss for each scale Si for each

image Ii. Specifically, given a Matryoshka visual representation XSi for scale Si, we maximize the
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Table 1: Comparison between LLaVA-1.5-M3 across various benchmarks under video understanding
benchmarks. LLaVA-1.5-M3 maintains the performance of LLaVA-1.5 while outperforming Qwen-
VL and InstructBLIP with fewer tokens.

Approach # Tokens MMBench GQA POPE VizWiz SEEDBench

Qwen-VL [7] 256 38.2 59.3 - 35.2 56.3
Qwen-VL-Chat [7] 256 60.6 57.5 - 38.9 58.2

InstructBLIP-7B [58] 32 36.0 49.2 - 34.5 53.4
InstructBLIP-13B [58] 32 - 49.5 78.9 33.4 -

LLaVA-1.5-7B [5] 576 64.8 62.0 85.9 54.4 60.5

LLaVA-1.5-M3

576 65.9 61.9 87.4 54.9 60.6
144 66.4 61.3 87.0 53.1 59.7
36 64.8 60.3 85.5 52.8 58.0
9 63.1 58.0 83.4 51.9 55.4
1 59.5 52.6 78.4 49.4 50.1

Table 2: Comparison of approaches with the SS baseline and M
3 across various benchmarks under

LLaVA-NeXT [4]. Here # Tokens denotes the number of visual tokens per image grid in LLaVA-
NeXT. SS denotes the baseline model trained with a Specific Scale of visual tokens. M

3 is at least as
good as SS, while performing better on tasks such as TextVQA, ChartQA, and MMBench. Oracle
denotes the case where the best tradeoff between visual tokens and performance is picked.

# Tokens Per
Grid Approach TextVQA AI2D ChartQA DocVQA MMBench POPE ScienceQA MMMU

576 SS 64.53 64.83 59.28 75.40 66.58 87.02 72.29 34.3
M

3 63.13 66.71 58.96 72.61 67.96 87.20 72.46 34.0

144 SS 62.16 65.77 55.28 67.69 67.78 87.66 72.15 36.4
M

3 62.61 68.07 57.04 66.48 69.50 87.67 72.32 36.1

36 SS 58.15 65.90 45.40 56.89 67.01 86.75 71.87 36.2
M

3 58.71 67.36 50.24 55.94 68.56 87.29 72.11 36.8

9 SS 50.95 65.06 37.76 44.21 65.29 85.62 72.37 36.8
M

3 51.97 66.77 42.00 43.52 67.35 86.17 71.85 35.2

1 SS 38.39 63.76 28.96 33.11 61.43 82.83 72.32 35.3
M

3 38.92 64.57 31.04 31.63 62.97 83.38 71.19 34.8

Oracle # Tokens 31.39 11.54 41.78 64.09 8.90 6.08 7.43 22.85
Performance 70.51 76.36 70.76 81.73 74.35 94.29 76.07 50.44

4.2 Image Understanding
LLaVA-1.5-M3 We evaluate LLaVA-1.5-M3 on the common multimodal understanding and rea-
soning benchmarks. Results are shown in Table 1. LLaVA-1.5-M3 with full tokens maintains the
performance of LLaVA-1.5 across diverse benchmarks. More importantly, our approach shows strong
performance even with 1 or 9 tokens. Specifically, in MMBench, a comprehensive multimodal
understanding benchmark, LLaVA-1.5-M3 with 9 tokens surpasses Qwen-VL-Chat with 256 tokens,
and achieves similar performance as Qwen-VL-Chat with even 1 token. Compared with Instruct-
BLIP [58], LLaVA-1.5M

3 with 9 tokens surpasses InstructBLIP-7B and InstructBLIP-13B across all
benchmarks. This demonstrates that our model has both flexibility and strong empirical performance
under diverse number of visual tokens.

LLaVA-NeXT-M3 We use the proposed Matryoshka Multimodal Models to finetune LLaVA-NeXT,
and compare LLaVA-NeXT-M3 with SS, which denotes the setting where the LLaVA-NeXT is trained
under a Specific Scale of visual tokens also for 1 epoch. We also include the oracle upperbound
performance. Specifically, ‘Oracle’ denotes the case where the best tradeoff between visual tokens
and performance is picked for each test instance. Specifically, for each test instance, we select the
the scale with the fewest amount of tokens but can answer the question correctly. Results are shown
in Table 2. Our approach, M

3, is at least as good as SS, while performing better on tasks such as
document understanding (TextVQA and ChartQA) and common benchmarks such as MMBench [23].

Our results also show that dataset level biases towards the visual token scales do exist. For example,
ScienceQA maintains consistent performance across all visual token scales. AI2D and MMBench
only encounter a small performance drop for even as few as 9 to 1 tokens. On the other hand, dense
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Table 3: Overall accuracy of LLaVA-NeXT-M3 and recent video LMMs on various video understand-
ing benchmarks. Here # Tokens denotes the overall number of visual tokens across all frames.

Approach # Tokens MSVD MSRVTT ActivityNet NextQA IntentQA EgoSchema

Video-LLaMA [60] - 51.6 29.6 12.4 - - -
LLaMA-Adapter [61] - 54.9 43.8 34.2 - - -
Video-ChatGPT [62] - 64.9 49.3 35.2 - - -
Video-LLaVA [63] 2048 70.7 59.2 45.3 - - -
InternVideo [64] - - - - 59.1 - 32.1

LLaVA-NeXT-7B [4] 2880 78.8 63.7 54.3 63.1 60.3 35.8

LLaVA-NeXT-7B-M3

2880 78.2 64.5 53.9 63.1 58.8 36.8
720 79.0 64.5 55.0 62.6 59.6 37.2
180 77.9 63.7 55.0 61.4 59.3 37.6
45 75.8 63.0 53.2 59.5 58.7 38.8
5 73.5 62.7 50.8 56.5 56.7 36.2

visual perception tasks such as TextVQA and DocVQA show a significant performance with fewer
tokens. This analysis shows that M

3 could serve as a framework to analyze the granularity that a
benchmark needs.

Furthermore, there is a large gap between the model’s actual performance under full tokens and
the upper-bound oracle. This indicates that using full tokens cannot always result in the optimal
performance for all samples; i.e., there is a large room of improvement towards the oracle point.

4.3 Video Understanding

Following IG-VLM [59], we directly conduct zero-shot inference on diverse video benchmarks using
LLaVA-NeXT-M3. Specifically, 6 frames are uniformly sampled over the entire video, then arranged
as a collage, which is fed into LLaVA-NeXT along with the question to get the response. Results
under LLaVA-NeXT-M3 and recent video LMMs are show in Table 3.

LLaVA-NeXT-M3 with full visual tokens again shows comparable performance with LLaVA-NeXT.
More interestingly, results indicate that full visual tokens usually do not lead to the best performance

in video understanding tasks. Specifically, on 4 out of 6 benchmarks, full visual tokens show less
desirable performance compared to 720 or 180 visual tokens. We suspect that very long visual context
could bring distraction (e.g., too much focus on potentially irrelevant background) to the model’s
prediction, where a compact representation of the video focusing on the more relevant information
may be more advantageous.

Finally, for most video understanding tasks such as ActivityNet, IntentQA and EgoSchema, with 9
tokens per image grid (45 tokens in total), the accuracy difference compared to full tokens (2880 in
total) is less than 1%. This demonstrates that the video questions in these benchmarks usually require
very sparse visual information, as the source of such video understanding benchmarks mostly comes
from natural scenes, which matches our observation in image understanding benchmarks.

4.4 In-depth Analysis
M3 shows much stronger performance compared to heuristics based sampling at test time. A
simple way to reduce the number of visual tokens via a training-free way is to conduct heuristic
token merging or reduction. In Table 4, we compare M

3 with three training-free approaches: average
pooling, spatial sampling, and sequential sampling. M

3 is much more resilient when the number of
tokens decreases, while the heuristic based sampling approaches show dramatic performance drop. A
visualization of the spatial and sequential sampling is shown in Figure 5.

M3 serves as a good metric for image complexity. We extract the response from LLaVA-NeXT-M3

in the TextVQA benchmark, and show the samples where using visual tokens across different scales
can answer the question correctly and incorrectly. Shown in Figure 4, the OCR performance aligns
with the complexity of the images, which indicates that M

3 can be utilized as a metric towards sample
level complexity.

Large gap between oracle and actual performance. As shown in Table 2, the oracle upper-bound
can use very few (6 ⇠ 64) tokens yet achieve at least 10% better performance compared to full visual
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Qwen-VL

• Vision encoder (1.9B) 

• Adapter (0.8B) 

• LLM (7.7B) 

• Inputs: Image, Bounding Box, Text 

• Outputs: Bounding Box, Text 

• Bounding box: Text format with special 
<box> and <ref> tokens

Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond, Bai etal 2023



Qwen-VL

• Paper has lots of details on dataset 
setup and training recipes (base 
models etc) 

• Great results for the time (Fall 2023)

3 Training

As illustrated in Fig. 3, the training process of the Qwen-VL model consists of three stages: two stages of
pre-training and a final stage of instruction fine-tuning training.

3.1 Pre-training

In the first stage of pre-training, we mainly utilize a large-scale, weakly labeled, web-crawled set of image-text
pairs. Our pre-training dataset is composed of several publicly accessible sources and some in-house data.
We made an e�ort to clean the dataset of certain patterns. As summarized in Table 2, the original dataset
contains a total of 5 billion image-text pairs, and after cleaning, 1.4 billion data remain, with 77.3% English
(text) data and 22.7% Chinese (text) data.

Table 2: Details of Qwen-VL pre-training data. LAION-en and LAION-zh are the English and Chinese
language subset of LAION-5B (Schuhmann et al., 2022a). LAION-COCO (Schuhmann et al., 2022b) is a
synthetic dataset generated from LAION-en. DataComp (Gadre et al., 2023) and Coyo (Byeon et al., 2022) are
collections of image-text pairs. CC12M (Changpinyo et al., 2021), CC3M (Sharma et al., 2018), SBU (Ordonez
et al., 2011) and COCO Caption (Chen et al., 2015) are academic caption datasets.

Language Dataset Original Cleaned Remaining%

English

LAION-en 2B 280M 14%
LAION-COCO 600M 300M 50%
DataComp 1.4B 300M 21%
Coyo 700M 200M 28%
CC12M 12M 8M 66%
CC3M 3M 3M 100%
SBU 1M 0.8M 80%
COCO Caption 0.6M 0.6M 100%

Chinese LAION-zh 108M 105M 97%
In-house Data 220M 220M 100%

Total 5B 1.4B 28%

We freeze the large language model and only optimize the vision encoder and VL adapter in this stage.
The input images are resized to 224 ⇥ 224. The training objective is to minimize the cross-entropy of the
text tokens. The maximum learning rate is 2e�4 and the training process uses a batch size of 30720 for the
image-text pairs, and the entire first stage of pre-training lasts for 50,000 steps, consuming approximately 1.5
billion image-text samples. More hyperparameters are detailed in Appendix C and the convergence curve of
this stage is shown in Figure 6.

3.2 Multi-task Pre-training

In the second stage of multi-task pre-training, we introduce high-quality and fine-grained VL annotation
data with a larger input resolution and interleaved image-text data. As summarized in Table 3, we trained
Qwen-VL on 7 tasks simultaneously. For text generation, we use the in-house collected corpus to maintain
the LLM’s ability. Captioning data is the same with Table 2 except for far fewer samples and excluding
LAION-COCO. We use a mixture of publicly available data for the VQA task which includes GQA (Hudson
andManning, 2019), VGQA (Krishna et al., 2017), VQAv2 (Goyal et al., 2017), DVQA (Kafle et al., 2018), OCR-
VQA (Mishra et al., 2019) and DocVQA (Mathew et al., 2021). We follow Kosmos-2 to use the GRIT (Peng
et al., 2023) dataset for the grounding task with minor modifications. For the reference grounding and
grounded captioning duality tasks, we construct training samples from GRIT (Peng et al., 2023), Visual
Genome (Krishna et al., 2017), RefCOCO (Kazemzadeh et al., 2014), RefCOCO+, and RefCOCOg (Mao et al.,
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2016). In order to improve the text-oriented tasks, we collect pdf and HTML format data from Common
Crawl1 and generate synthetic OCR data in English and Chinese language with natural scenery background,
following (Kim et al., 2022). Finally, we simply construct interleaved image-text data by packing the same
task data into sequences of length 2048.

Table 3: Details of Qwen-VL multi-task pre-training data.

Task # Samples Dataset

Captioning 19.7M LAION-en & zh, DataComp, Coyo, CC12M & 3M, SBU,
COCO, In-house Data

VQA 3.6M GQA, VGQA, VQAv2, DVQA, OCR-VQA, DocVQA,
TextVQA, ChartQA, AI2D

Grounding2 3.5M GRIT
Ref Grounding 8.7M GRIT, Visual Genome, RefCOCO, RefCOCO+, RefCOCOg
Grounded Cap. 8.7M GRIT, Visual Genome, RefCOCO, RefCOCO+, RefCOCOg
OCR 24.8M SynthDoG-en & zh, Common Crawl pdf & HTML
Pure-text Autoregression 7.8M In-house Data

We increase the input resolution of the visual encoder from 224⇥ 224 to 448⇥ 448, reducing the information
loss caused by image down-sampling. Besides, we ablate the window attention and global attention for
higher resolutions of the vision transformer in Appendix E.3. We unlocked the large language model and
trained the whole model. The training objective is the same as the pre-training stage.

3.3 Supervised Fine-tuning

During this stage, we finetuned the Qwen-VL pre-trained model through instruction fine-tuning to enhance
its instruction following and dialogue capabilities, resulting in the interactive Qwen-VL-Chat model. The
multi-modal instruction tuning data primarily comes from caption data or dialogue data generated through
LLM self-instruction, which often only addresses single-image dialogue and reasoning and is limited to
image content comprehension. We construct an additional set of dialogue data through manual annotation,
model generation, and strategy concatenation to incorporate localization and multi-image comprehension
abilities into the Qwen-VL model. We confirm that the model e�ectively transfers these capabilities to a
wider range of languages and question types. Additionally, we mix multi-modal and pure text dialogue
data during training to ensure the model’s universality in dialogue capabilities. The instruction tuning data
amounts to 350k. In this stage, we freeze the visual encoder and optimize the language model and adapter
module. We demonstrate the data format of this stage in Appendix B.2.

4 Evaluation

In this section, we conduct an overall evaluation on various multi-modal tasks to comprehensively assess
our models’ visual understanding ability. In the following, Qwen-VL denotes the model after the multi-task
training, and Qwen-VL-Chat denotes the model after supervised fine-tuning (SFT) stage.

Table 9 provides a detailed summary of the used evaluation benchmarks and corresponding metrics.

4.1 Image Caption and General Visual Question Answering

Image caption and general visual question answering (VQA) are two conventional tasks for vision-language
models. Specifically, image caption requires the model to generate a description for a given image and general
VQA requires the model to generate an answer for a given image-question pair.

1https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated
2This task is to generate noun/phrase grounded captions (Peng et al., 2023).
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Stage 1:

Stage 2:

Image Captioning

<img>cc3m/01581435.jpg</img>Generate the caption in English: the beautiful flowers for
design.<eos>

Vision Question Answering

<img>VG_100K_2/1.jpg</img> Does the bandage have a di�erent color than the wrist band?
Answer: No, both the bandage and the wrist band are white.<eos>

OCR VQA

<img>ocr_vqa/1.jpg</img> What is the title of this book? Answer: Asi Se Dice!, Volume 2: Work-
book And Audio Activities (Glencoe Spanish) (Spanish Edition)<eos>

Caption with Grounding

<img>coyo700m/1.jpg</img>Generate the caption in English with grounding: Beautiful shot of
<ref>bees</ref><box>(661,612),(833,812)</box><box>(120,555),(265,770) </box> gathering
nectars from <ref>an apricot flower</ref><box>(224,13),(399,313) </box><eos>

Referring Grounding

<img>VG_100K_2/3.jpg</img><ref>the ear on a gira�e</ref><box>(176,106),(232,160)
</box><eos>

Grounded Captioning

<img>VG_100K_2/4.jpg</img><ref>This</ref><box>(360,542),(476,705)</box> is Yellow cross
country ski racing gloves<eos>

OCR
<img>synthdog/1.jpg</img>OCR with grounding: <ref>It is managed</ref> <quad> (568,121),
(625,131), (624,182), (567,172)</quad>...<eos>

B.2 Data Format of Supervised Fine-tuning

To better accommodatemulti-image dialogue andmultiple image inputs, we add the string "Picture id:" before
di�erent images, where the id corresponds to the order of image input dialogue. In terms of dialogue format,
we construct our instruction tuning dataset using the ChatML (Openai) format, where each interaction’s
statement is marked with two special tokens (<im_start> and <im_end>) to facilitate dialogue termination.

The Dataset Format Example of ChatML

<im_start>user
Picture 1: <img>vg/VG_100K_2/649.jpg</img>What is the sign in the picture?<im_end>
<im_start>assistant
The sign is a road closure with an orange rhombus.<im_end>
<im_start>user
How is the weather in the picture?<im_end>
<im_start>assistant
The shape of the road closure sign is an orange rhombus.<im_end>

During training, we ensure the consistency between prediction and training distributions by only supervising
answers and special tokens (blue in the example), and not supervising role names or question prompts.
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CogVLM

• VLM with Flamingo-style fusion (but on 
parallel not gated sequence) 

• Stage 1 - Pre-training: Captioning 1.5B 
images (LAION-2B, COYO-700M 
filtered) 

• Stage 2 - Pre-training: Add in Referring 
Expression Comprehension (same data, 
boxes form open-vocab detector)

CogVLM: Visual Expert for Pretrained Language Models, Wang etal 2023



CogVLM

• Alignment 

• Chat-style data (following LLaVa) 

• Grounded Captioning, Referring 
Expression (generation and 
comprehension), grounded VQA

CogVLM: Visual Expert for Pretrained Language Models

Table 1. Performance on Image Captioning benchmarks. All tasks use CIDEr as the evaluation metric. OOD refers to out-of-domain
test set. Karp. refers to the Karpathy test split.

Method Train
Data

NoCaps val NoCaps test Flickr COCO TextCaps

OOD overall OOD overall Karp. Karp. test

Human - 95.7 87.1 91.6 85.3 - - 125.1
VinVL (Zhang et al., 2021) 8.9M 83.8 94.3 78.0 92.5 - 130.8 -
SimVLM (Wang et al., 2021) 1.8B 115.2 112.2 109.5 110.3 - 143.3 -
CoCa (Yu et al., 2022) 4.8B - 122.4 - 120.6 - 143.6 -
LEMON (Hu et al., 2022) 2B 120.2 117.3 110.1 114.3 - 139.1 -
Flamingo (Alayrac et al., 2022) 2.3B - - - - 67.2 138.1 -
Prismer (Liu et al., 2023d) 12.7M 113.5 112.9 - 110.8 - 136.5 -
BLIP-2 (Li et al., 2023b) 129M 124.8 121.6 - - - 144.5 -
InstructBLIP (Dai et al., 2023) 129M - 123.1 - - 82.4 - -
UniversalCap (Cornia et al., 2021) 35M 123.4 122.1 114.3 119.3 - 143.4 -
GIT (Wang et al., 2022a) 0.8B 127.1 125.5 122.0 123.4 49.6 144.8 138.2
GIT2 (Wang et al., 2022a) 12.9B 130.6 126.9 122.3 124.8 50.7 145.0 145.0
Qwen-VL (Bai et al., 2023) 1.4B - 121.4 - - 85.8 - -
PaLI-17B (Chen et al., 2022b) 1.6B - 127.0 - 124.4 - 149.1 135.4
PaLI-X-55B (Chen et al., 2023b) - - 126.3 - 124.3 - 149.2 147.0

CogVLM (ours) 1.5B 132.6 128.3 128.0 126.4 94.9 148.7 144.9

• LVLM Benchmarks. LVLM benchmarks are primar-
ily employed to assess the advanced capabilities of
large multimodal models, such as object recognition
and localization, OCR, visual description, and visual
knowledge reasoning. We conduct multidimensional
evaluations of the models on datasets including MM-
Vet (Yu et al., 2023), MMBench (Liu et al., 2023g),
SEED-Bench (Li et al., 2023a), LLaVA-Bench (Liu
et al., 2023c), POPE (Li et al., 2023c), MMMU (Yue
et al., 2023) and MathVista (Lu et al., 2023).

• Visual Grounding. Visual grounding involves a set
of tasks that establish referential links between textual
mentions in a sentence and specific regions in an im-
age. We evaluate our model on the typical datasets,
including Visual7w (Zhu et al., 2016), RefCOCO (Liu
et al., 2017), RefCOCO+, and RefCOCOg to ensure
completeness.

3.1. Image Captioning

We evaluate the image captioning capability of our pre-
trained base model on the aforementioned four benchmarks.
In a zero-shot evaluation on the Nocaps and Flickr datasets,
we assess the precision of our model in describing long-
tail visual concepts. Additionally, we present results from
finetuning on the COCO and TextCaps datasets.

The detailed performance is shown in Table 1. Overall, our
model achieves the SOTA or compatible performance across
the board. Specifically, on the NoCaps benchmark, our base
model outperforms the previous best method, GIT2, across
four splits with a maximum of 5.7 points in the out-domain
set while only consuming 10% of the pretraining data (1.5B

vs 12.9B). On the Flickr benchmark, our model achieves a
SOTA score of 94.9 surpassing the concurrently released
Qwen-VL model by 9.1 points. These results demonstrate
the remarkable capability and robustness of our pretrained
model on the image captioning task. We also evaluate our
model on the COCO (Lin et al., 2014) and TextCaps, where
the latter is specifically designed to integrate the textual in-
formation of the given image into captions. Though training
without the dedicated OCR data, encouragingly, our base
model reveals a significant text-reading ability and obtains
a competitive performance with PaLI-X-55B, and outper-
forms the previous best model of the same scale, PaLI-17B,
by 9.1 points score.

3.2. Visual Question Answering

As illustrated in Table 2, our CogVLM model demon-
strates outstanding performance and a significant lead
over models of similar parameter scale across a variety
of tasks, including daily-life image question-answering
dataset VQAv2, text-intensive image question-answering
datasets such as TextVQA and OCRVQA, and knowledge-
demanding datasets like OKVQA and ScienceQA. This
success showcases the model’s robust generalization capa-
bilities and potential across diverse domains.

3.3. LVLM Benchmarks

Our findings, detailed in Table 2, demonstrate that CogVLM
achieved state-of-the-art results in all 7 LVLM-benchmarks,
markedly surpassing all other models. It also outper-
formed multimodal models that utilized larger language
models, such as LLava1.5 with Vicuna-13B and Emu-2 with
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Table 2. Generalist performance on VQA and LVLM benchmarks. * donates the dataset has been trained during SFT stage. We
compared with the latest state-of-the-art generalist models, including MiniGPT-4 (Zhu et al., 2023), IDEFICS-Instruct (Laurençon et al.,
2023), OpenFlamingo (Awadalla et al., 2023), DreamLLM (Dong et al., 2023), InstructBLIP (Dai et al., 2023), Fuyu (Bavishi et al., 2023),
Qwen-VL (Bai et al., 2023), LLaVA-1.5 (Liu et al., 2023b), mPLUG-Owl2 (Ye et al., 2023), SPHINX (Lin et al., 2023b), Emu2 (Sun
et al., 2023a).

Method LLM VQA LVLM-Benchmark
VQAv2 OKVQA TextVQA OCRVQA ScienceQA MM-Vet SEED MMBench LLaVA POPE MMMU MathVista

MiniGPT-4 Vicuna-7B - - 0.6 - 39.6 22.1 47.4 23.0 45.1 - - 23.1
IDEFICS-Instruct LLaMA-65B 37.4 36.9 32.9 - 61.8 39.7 53.2 54.5 56.9 - - 26.2
OpenFlamingo MPT-7B 53.0 38.3 28.3 - 44.8 24.8 42.7 5.7 34.2 - 26.3 18.6
DreamLLM Vicuna-7B 56.6 44.3 34.9 - - 35.9 - 49.9 - - - -
InstructBLIP Vicuna-7B - - 50.1 - 60.5 26.2 58.8 33.9 59.8 53.8 - 25.3
Fuyu Fuyu-8B 74.2* 60.6* - - - - - - - - 27.4 -
Qwen-VL-Chat Qwen-7B 78.2* 56.6* 61.5* 70.5* 68.8 - 65.4 61.8 67.7 - 32.9 33.8
LLaVA-1.5 Vicuna-7B 78.5* - 58.2* - 66.8 30.5 58.6 64.3 60.7 85.9 - 23.6
mPLUG-Owl2 LLaMA2-7B 79.4* 57.7* 58.2* - 68.7 36.2 64.1 64.5 25.0 86.2 32.1 25.3
Unified-IO2 UIO-2XXL 79.4* 55.5* - - 86.2* - 65.6 71.5 - 87.7 - -
LLaVA-1.5 Vicuna-13B 80.0* - 61.3* - 71.6 35.4 61.6 67.7 64.6 85.9 33.6 26.1
SPHINX-2k LLaMA2 13B 80.7* 62.6* 61.2* 67.8* 70.6 40.2 71.6 65.9 - 87.2 32.9 27.8
Emu2-Chat LLaMA-33B 84.9* 64.8* 66.6* - - 48.5 62.8 63.6 56.4 - 34.1 -

CogVLM-Chat Vicuna-7B 82.3* 64.8* 70.4* 73.8* 91.2* 51.1 72.5 77.6 77.8 87.9 41.1 34.5

Table 3. Results on Referring Expression Comprehension and Grounded Visual Question Answering.

Type Model RefCOCO RefCOCO+ RefCOCOg Visual7W
val test-A test-B val test-A test-B val test test

Generalist

OFA-L* (Wang et al., 2022b) 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 -
VisionLLM-H (Wang et al., 2023b) - 86.70 - - - - - - -
Shikra-7B (Chen et al., 2023a) 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 -
Shikra-13B (Chen et al., 2023a) 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 85.33
Qwen-VL (Bai et al., 2023) 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48 -
Ferret-13B (You et al., 2023) 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 -
CogVLM-Grounding 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79 91.05

Specialist

G-DINO-L (Liu et al., 2023e) 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02 -
UNINEXT-H (Lin et al., 2023a) 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37 -
ONE-PEACE (Wang et al., 2023a) 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27 -

LLAMA-33B, leading by 15.7 and 2.6 points on MM-vet,
9.9 and 14.0 points on MMBench, respectively. Compared
to IDEFICS-Instruct trained on LLaMA-65B, CogVLM’s
scores exceeded by 19.3, 23.1, and 20.9 points on Seed-
Bench, MMBench, and LLaVA-Bench, respectively. Fur-
thermore, CogVLM achieved a score of 41.1 on the MMMU
dataset, and also scored 87.9 on the hallucination assessment
dataset POPE, along with 35.2 on the multimodal mathe-
matical reasoning benchmark MathVista. These impressive
results not only showcase its robust reasoning abilities and
multi-task generalization capabilities but also clearly demon-
strate that CogVLM is significantly outpacing other models
in these domains. Notably, shallow fusion models such as
InstructBLIP and MiniGPT-4 underperformed across most
benchmarks, despite InstructBLIP’s extensive training on
instructional data, underscoring the necessity of deep fusion
for enhanced performance.

3.4. Visual Grounding

Table 3 shows the result on the standard visual grounding
benchmarks. We find that our generalist model achieves
state-of-the-art performance across the board, with a sig-
nificant advantage over the previous or concurrent models.
As shown in the bottom part of Table 3, our model even
surpasses models that are specifically trained for individ-
ual tasks, achieving SOTA performance on 5 of 9 splits.
For instance, in the RefCOCO val subset, our model at-
tains a score of 92.76, surpassing UNINEXT-H’s 92.64; in
the RefCOCO+ test-A subset, it scores 92.91, exceeding
ONE-PEACE’s 92.21; and in the RefCOCOg test subset, it
achieves 90.79, outperforming UNINEXT-H’s 89.27. These
results suggest a remarkable visual grounding capability of
our model incorporating our training paradigm.
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Table 2. Generalist performance on VQA and LVLM benchmarks. * donates the dataset has been trained during SFT stage. We
compared with the latest state-of-the-art generalist models, including MiniGPT-4 (Zhu et al., 2023), IDEFICS-Instruct (Laurençon et al.,
2023), OpenFlamingo (Awadalla et al., 2023), DreamLLM (Dong et al., 2023), InstructBLIP (Dai et al., 2023), Fuyu (Bavishi et al., 2023),
Qwen-VL (Bai et al., 2023), LLaVA-1.5 (Liu et al., 2023b), mPLUG-Owl2 (Ye et al., 2023), SPHINX (Lin et al., 2023b), Emu2 (Sun
et al., 2023a).
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LLaVA-1.5 Vicuna-13B 80.0* - 61.3* - 71.6 35.4 61.6 67.7 64.6 85.9 33.6 26.1
SPHINX-2k LLaMA2 13B 80.7* 62.6* 61.2* 67.8* 70.6 40.2 71.6 65.9 - 87.2 32.9 27.8
Emu2-Chat LLaMA-33B 84.9* 64.8* 66.6* - - 48.5 62.8 63.6 56.4 - 34.1 -

CogVLM-Chat Vicuna-7B 82.3* 64.8* 70.4* 73.8* 91.2* 51.1 72.5 77.6 77.8 87.9 41.1 34.5

Table 3. Results on Referring Expression Comprehension and Grounded Visual Question Answering.

Type Model RefCOCO RefCOCO+ RefCOCOg Visual7W
val test-A test-B val test-A test-B val test test

Generalist

OFA-L* (Wang et al., 2022b) 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 -
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Specialist
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ONE-PEACE (Wang et al., 2023a) 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27 -

LLAMA-33B, leading by 15.7 and 2.6 points on MM-vet,
9.9 and 14.0 points on MMBench, respectively. Compared
to IDEFICS-Instruct trained on LLaMA-65B, CogVLM’s
scores exceeded by 19.3, 23.1, and 20.9 points on Seed-
Bench, MMBench, and LLaVA-Bench, respectively. Fur-
thermore, CogVLM achieved a score of 41.1 on the MMMU
dataset, and also scored 87.9 on the hallucination assessment
dataset POPE, along with 35.2 on the multimodal mathe-
matical reasoning benchmark MathVista. These impressive
results not only showcase its robust reasoning abilities and
multi-task generalization capabilities but also clearly demon-
strate that CogVLM is significantly outpacing other models
in these domains. Notably, shallow fusion models such as
InstructBLIP and MiniGPT-4 underperformed across most
benchmarks, despite InstructBLIP’s extensive training on
instructional data, underscoring the necessity of deep fusion
for enhanced performance.

3.4. Visual Grounding

Table 3 shows the result on the standard visual grounding
benchmarks. We find that our generalist model achieves
state-of-the-art performance across the board, with a sig-
nificant advantage over the previous or concurrent models.
As shown in the bottom part of Table 3, our model even
surpasses models that are specifically trained for individ-
ual tasks, achieving SOTA performance on 5 of 9 splits.
For instance, in the RefCOCO val subset, our model at-
tains a score of 92.76, surpassing UNINEXT-H’s 92.64; in
the RefCOCO+ test-A subset, it scores 92.91, exceeding
ONE-PEACE’s 92.21; and in the RefCOCOg test subset, it
achieves 90.79, outperforming UNINEXT-H’s 89.27. These
results suggest a remarkable visual grounding capability of
our model incorporating our training paradigm.
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OtterHD

• Built on Perssimon-8B and Fuyu-8B 
(decoder only transformers) 

• Images fed in tokenized 

• Image new-line token 

• Dynamic image resolution 

• Instruction-tuned

OtterHD: A High-Resolution Multi-modality Model, Li etal 2023

OtterHD: A High-Resolution Multi-modality Model

Bo Li* Peiyuan Zhang*

Jingkang Yang† Yuanhan Zhang† Fanyi Pu† Ziwei LiuB
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https://github.com/Luodian/Otter
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Abstract

In this paper, we present OtterHD-8B, an innovative multimodal model evolved
from Fuyu-8B, specifically engineered to interpret high-resolution visual inputs
with granular precision. Unlike conventional models that are constrained by fixed-
size vision encoders, OtterHD-8B boasts the ability to handle flexible input dimen-
sions, ensuring its versatility across various inference requirements. Alongside
this model, we introduce MagnifierBench, an evaluation framework designed to
scrutinize models’ ability to discern minute details and spatial relationships of
small objects. Our comparative analysis reveals that while current leading mod-
els falter on this benchmark, OtterHD-8B, particularly when directly processing
high-resolution inputs, outperforms its counterparts by a substantial margin. The
findings illuminate the structural variances in visual information processing among
different models and the influence that the vision encoders’ pre-training resolu-
tion disparities have on model effectiveness within such benchmarks. Our study
highlights the critical role of flexibility and high-resolution input capabilities in
large multimodal models and also exemplifies the potential inherent in the Fuyu
architecture’s simplicity for handling complex visual data.

*Equal contribution, †Equal appreciation on assistance, BCorresponding author.
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Query Prompt:
What’s inside this painting?

Perception & Recognition Demonstrations

Model Response:
The image depicts a detailed, traditional East Asian 
scene, possibly of Chinese origin. A large, 
intricately designed building with multiple tiers 
and a sloping roof stands prominently in the left-
center. The architecture, with its wooden beams, 
intricate carvings, and elevated structure, is 
reminiscent of ancient Chinese temples or palaces.

Query Prompt:
How many camels are inside this image?

Model Response:
It is hard to examine the camels in such intricate 
image. However, I find there are three camels 
visible in the image.

Figure 1: Perception and recognition demonstration of OtterHD-8B. The image is a traditional
Chinese painting from the Song Dynasty, Along the River During the Qingming Festival. This is a
part of the entire artwork, with a resolution of 2466⇥1766.

Table 1: Performance comparison of OtterHD-8B with prominent open-sourced LMMs, detailing
instruction/response data pairs, training, and evaluation resolutions. The term Dynamic refers to train-
ing with varied resolutions as elaborated in Sec. 4.2. The term Original indicates evaluations using
each image’s resolution without any resizing operation, whereas other models undergo evaluations
with images resized to a consistent square resolution at denoted in Eval Res. Details on metrics are
provided in Sec. 4.1.

Models I/R Pairs Train Res. Eval Res. MagBench MME1

POPE MM-V MMB M-Vista
Multi. FF. Cog. Percep.

Idefics-9Binstruct [24] 1M 224 224 20.8 13.4 187.9 1165.0 74.6 23.7 45.5 19.8
Otter-9B [25] 150K 224 224 25.7 15.8 306.4 1292.3 72.5 24.7 48.3 19.7

InstructBLIP-7B [13] 1.2M 224 224 5.6 15.2 - - - 26.2 36.0 -
InstructBLIP-13B [13] 1.2M 224 224 3.8 16.3 291.8 1212.8 78.9 25.6 33.9 25.3

LLaVA-7B1.5 [30] 3.6M2 336 336 26.8 24.7 - 1510.7 85.9 30.5 59.5 -
Qwen-VL-7Bchat [4] 1.4B 448 448 14.5 15.9 360.7 1487.5 - - 61.8 -

Fuyu-8B [5] - - Original 29.3 15.2 237.5 728.6 74.1 21.4 10.7 20.6

OtterHD-8B 370K
512 512 33.5 31.4 289.8 1359.3 86.1 25.1 58.5 22.3

1024 1024 37.8 37.2 288.5 1313.7 81.5 19.8 53.6 17.3
Dynamic Original 42.7 39.9 331.4 1223.4 86.0 26.3 58.3 23.5

2.1 Model Design

Perssimon-8B [19] Persimmon-8B is a decoder-only transformer with modifications like squared
ReLU activation [49], rotary positional encodings [50], and decoupled input\output embeddings.
It also includes a layernorm for the Q and K embeddings before attention calculation [16]. The
model has a hidden size of 4096, 64 heads, and 36 layers, and has seen 737 billion tokens during
training. The released checkpoint has approximately 9.3B parameters, making it slightly larger
than Llama-7B [54], and its inference cost is comparable to an 8B parameter model with combined
embeddings.

Fuyu-8B [5] Fuyu-8B mirrors Persimmon-8B in its design as a decoder-only transformer tailored
to both image and text input without an image encoder. Images are divided into 30 by 30 patches
and processed similarly to text using causal attention. These patches are tokenized in a raster-scan

1 The metric for MME is reported by scores, while for other benchmarks, by accuracies. 2 The converted
instruction/response pairs in the LLaVA-1.5’s 665K data, where they put multiple instruction/response pairs
towards one image into one sentence. The conversion is made to align with those used in other models in
measuring how many instructions are tuned.

3

A Extended Details

A.1 Data Mixture & Average Resolutions

Table 3 offers a detailed comparison of the average image resolutions (width and height in pixels)
and the number of instruction/response pairs in multiple datasets. This table provides essential
insights into the data heterogeneity and scale, serving as a crucial reference for understanding the
computational and statistical characteristics of the datasets involved in our model training.

Table 3: Summary of average width, height and number of instruction/response pairs across various
datasets in our data mixture. The width and height are measured in pixels.

Dataset LLaVA-DD/CR VQAv2 GQA OKVQA OCRVQA A-OKVQA COCO-GOI

Avg. W 577 581 495 617 352 587 586
Avg. H 481 482 409 448 490 482 476

Pairs 53240 20000 30000 18018 16354 34112 20000

Dataset COCO-Caption TextQA RefCOCO COCO-ITM ImageNet LLaVA-RLHF Combined

Avg. W 578 950 591 577 469 340 542
Avg. H 484 811 486 484 387 572 467

Pairs 20000 19293 20000 20000 50000 50000 371017

A.2 Hyperparameters

Tab. 4 provides a comparative overview of the hyperparameters used in two different instruction
tuning approaches: LoRA and Full-finetune. This comparison serves to elucidate the computational
requirements and settings that yield optimal performance for each approach. However, as the optimal
settings may vary based on the computational resources available and the complexity of the problem
being addressed.

Table 4: Comparison of hyperparameter settings between the LoRA and Full-finetune approaches.
H-Params Batch Size LR LR Schedule LR Warmup Ratio Epoch Optimizer DeepSpeed Peak Mem. / GPU

LoRA 128
1e-5 cosine 0.03

6
AdamW Zero2

⇠70G

Full-finetune 64 3 ⇠72G

A.3 Full-parameters vs. LoRA finetuning

In assessing the efficacy of Low-Rank Adaptation (LoRA) on model performance during finetuning,
we observed distinct training behaviors as delineated in Figure 9. The left plot of the figure elucidates
that integrating LoRA results in a more stable and consistent reduction in training loss over batch steps,
indicative of an enhanced learning efficiency as opposed to the conventional full parameter finetuning
approach. Furthermore, the right plot in Figure 9 showcases a significantly higher token processing
rate per GPU when utilizing LoRA, highlighting its contribution to improved computational efficiency.

For quantitative performance assessment, Table 5 contrasts the outcomes of full-finetuning and
LoRA-finetuning techniques. Employing the same training regimen on the LLaVA-Instruct-150K
dataset [31] for a single epoch, the LoRA-SFT approach achieved a notable decrease in the estimated
training duration, plummeting from three hours to merely one hour. This remarkable reduction
in training time came with only a marginal dip in performance metrics on MagBench and MM-
Vet benchmarks. These observations accentuate the practical benefits of LoRA, which offers a
compelling tradeoff between efficiency and model performance, making it an attractive alternative
for resource-constrained environments or scenarios requiring rapid model iteration.

The insights gleaned from our experiments suggest that the utilization of LoRA enables researchers
and practitioners to significantly cut down on computational resources and time, which are often
considerable bottlenecks in the finetuning of large language models. While there is an observable
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OtterHD

• More data 

• Faster base-model 

• New High-res VLM benchmark 
(MagnifierBench)

OtterHD: A High-Resolution Multi-modality Model, Li etal 2023
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Abstract

In this paper, we present OtterHD-8B, an innovative multimodal model evolved
from Fuyu-8B, specifically engineered to interpret high-resolution visual inputs
with granular precision. Unlike conventional models that are constrained by fixed-
size vision encoders, OtterHD-8B boasts the ability to handle flexible input dimen-
sions, ensuring its versatility across various inference requirements. Alongside
this model, we introduce MagnifierBench, an evaluation framework designed to
scrutinize models’ ability to discern minute details and spatial relationships of
small objects. Our comparative analysis reveals that while current leading mod-
els falter on this benchmark, OtterHD-8B, particularly when directly processing
high-resolution inputs, outperforms its counterparts by a substantial margin. The
findings illuminate the structural variances in visual information processing among
different models and the influence that the vision encoders’ pre-training resolu-
tion disparities have on model effectiveness within such benchmarks. Our study
highlights the critical role of flexibility and high-resolution input capabilities in
large multimodal models and also exemplifies the potential inherent in the Fuyu
architecture’s simplicity for handling complex visual data.

*Equal contribution, †Equal appreciation on assistance, BCorresponding author.
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order, with a unique "image-newline" character indicating line breaks of each row. The model uses
its inherent position embeddings to understand varying image sizes, eliminating the necessity for
distinct high and low-resolution training phases like the PaLI series.

OtterHD-8B Our OtterHD-8B is a model instruction-tuned from Fuyu-8B, aiming at examining
the impact of increasing resolutions on the performance of downstream tasks. We used the following
instruction format and used Fuyu’s natively defined \x04 as the beginning of the answer token.

{image tokens} User:{ instruction} Assistant :\x04 {answer} \eos

Similar to Fuyu-8B, images are first resized to a specified target size and then segmented into
patches of size 30x30, with padding applied to the bottom and right edges. For ablation studies and
comparative analysis, the target size can be set to a fixed or randomly sampled resolution ranging
from 448⇥448 to 1024⇥1024, as elaborated in Sec. 4. We did not explore image augmentation
methods such as random cropping. By scaling up the original image to a larger resolution while
maintaining a fixed patch size, the patches effectively capture finer details with a smaller receptive
field. Notably, OtterHD represents the first open-source instruction-tuned LMM trained on inputs
up to 1024⇥1024. As demonstrated in Sec. 4, it further generalizes to even larger resolutions (e.g.

1440⇥1440) during inference.

2.2 Training Details

In preliminary experiments, we found that the Fuyu model exhibited limitations in responding to
specific instructions within certain benchmarks, such as not being able to respond well to option
letters and yes or no. This results in the very weak performance on MME [21] and MMBench [34].

To address these shortcomings, we embarked on instruction tuning Fuyu model on our data mixture
and used a new instruction template. However, the amount of our instruction tuning training is
relatively small compared to state-of-the-art LMMs [31, 4], there’s a possibility that Fuyu’s original
capabilities might be compromised to some extent.

Data Mixture We compiled a total of 370K instruction/response pairs sourced from the follow-
ing public datasets: LLaVA-Instruct [30], VQAv2 [2], GQA [23], OKVQA [36], OCRVQA [38],
A-OKVQA [45], COCO-GOI [33], COCO-Caption [10], TextQA [48], RefCOCO [58], COCO-
ITM [28], ImageNet [17], and LLaVA-RLHF [51]. The data mixture and specific prompt strategies
are motivated by LLaVA-1.5 [30] and Idefics-Instruct [24] to achieve better text formatting
control. All the datasets were organized into instruction/response pairs, aggregated into a single
dataloader and uniformly sampled during the training phase to ensure representational integrity.

On average, each instruction/response pair produces approximately 200 text tokens and 342 image
tokens including |NEWLINE| tokens, when the input resolution is set to 512⇥ 512. Further details,
including the average dimensions of images in each dataset, can be found in Appendix A.1.

Implementation & Optimization
Our experiments utilize the PyTorch library in conjunction with the HuggingFace transformers [56]
framework. We find that the native HuggingFace implementation of Fuyu-8B is highly unoptimized.
We thus augment the modeling code with FlashAttention-2 [15] and other fused operators including
fused layernorm, fused square ReLU, and fused rotary positional embedding from the FlashAttention
repository [15]. Fuyu’s simplified architecture facilitates us to do this in a fairly convenient way. As
illustrated in Fig. 2, the modifications substantially enhance GPU utilization and throughput.

In the configurations, OB refers to finetuning with full parameters, whereas OB-Light indicates LoRA
finetuning with r = 32 and ↵ = 32. The targeted modules for modification encompass all attention
and linear layers, including the head layer.

Our implementation permits the completion of full-parameter training within 3 hours per epoch on
8⇥A100 GPUs. Additionally, LoRA finetuning requires just 1 hour per epoch. The model is trained
with a batch size of 64 using the AdamW optimizer, set with a learning rate of 1⇥ 10�5 and a weight
decay of 0.1. A discussion on full-parameters and LoRA tuning are provided in Appendix A.3 and
more details are provided in the Appendix A.2.
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Figure 4: Comparison of OtterHD’s performance at different evaluation resolutions. The meanings of
fixed and dynamic are explained in Sec. 4.2.

evaluation of LMMs’ perceptual ability on fine-grained details. On the other hand, OtterHD-8B
showcases outstanding performance on MagnifierBench. Notably, its accuracy improves with higher
resolutions. OtterHD-8B also is capable of adjusting to varied image resolutions and aspect ratios
in the test set when the training process involves dynamic resizing of images. Our overall results
highlight OtterHD-8B’s versatility and superior capability in handling a broad spectrum of tasks and
resolutions, making it an exemplary choice for a wide range of multi-modal applications.

4.2 Empirical Insights

Increasing Resolution and Image-Text Ratios To further explore the effect of increasing resolution
and OtterHD’s ability to generalize to different, potentially larger resolutions, we train Otter8B with
fixed or dynamic resolution and present results in Fig. 4. The x-axis suggests that, as the resolution
grows during evaluation, more image tokens are sent to the language decoder, offering more details
of the image. We compare the performance on MagnifieBench when evaluating across different
resolutions under two training strategies. Fixed represents using the same resolution to square-resize
images during training. Dynamic means that images are resized to different dimensions sampled
uniformly from [448, 512, 768, 1024] during training. We evaluate the two strategies on various
resolutions, including 1440 to further test if the model can generalize to even larger resolutions.
Tab. 3 further shows the image tokens, the image newline tokens, and the average text tokens of
MagnificerBench’s question-answer pair of each setup.

Table 2: Image and text token
counts at varying resolutions.

Resolution 448 512 768 1024

Image T. 225 324 676 1225
Newline T. 15 18 26 35

Text T. (Avg.) 200 200 200 200

The results reveal that increasing resolution results in better perfor-
mance on MagnifierBench. Since the average text tokens remain
unchanged, the image-to-text token ratio gradually increases, and
it suggests a detailed focus on the image, emphasizing the potential
importance of tasks that require detailed visual recognition. This
progression accentuates the significance of resolution in LMMs,
particularly for tasks necessitating intricate visual entailment. Ad-
ditionally, the performance variance between the fixed and dynamic

training approaches highlights the benefits of dynamic resizing, especially in preventing overfitting to
specific resolutions. The dynamic strategy further allows the model to generalize to a larger resolution
(1440) not seen during training.

4.3 Qualitative Demonstrations

We bolster our findings with qualitative demonstrations presented in Figs. 5 to 8. These illustrations
shed light on the performance of OtterHD-8B relative to other LMMs in real-world scenarios,
encompassing object counting, detailed scene text comprehension, and screenshot understanding.
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VILA

• Lot’s of tricks and ablations 

• How to interleave multiple image-text 
pairs 

• Blending text-only and image-text 
data

VILA: On Pre-training for Visual Language Models, Lin etal 2023

Method LLM Res. PT IT VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MM-Vet

BLIP-2 [35] Vicuna-13B 224 129M - 41.0 41 19.6 61 42.5 85.3 1293.8 – – 46.4 38.1 22.4
InstructBLIP [18] Vicuna-7B 224 129M 1.2M – 49.2 34.5 60.5 50.1 – – 36 23.7 53.4 60.9 26.2
InstructBLIP [18] Vicuna-13B 224 129M 1.2M – 49.5 33.4 63.1 50.7 78.9 1212.8 – – – 58.2 25.6
Shikra [12] Vicuna-13B 224 600K 5.5M 77.4⇤ – – – – – – 58.8 – – – –
IDEFICS-9B [30] LLaMA-7B 224 353M 1M 50.9 38.4 35.5 – 25.9 – – 48.2 25.2 – – –
IDEFICS-80B [30] LLaMA-65B 224 353M 1M 60.0 45.2 36.0 – 30.9 – – 54.5 38.1 – – –
Qwen-VL [9] Qwen-7B 448 1.4B 50M 78.8⇤ 59.3⇤ 35.2 67.1 63.8 – – 38.2 7.4 56.3 – –
Qwen-VL-Chat [9] Qwen-7B 448 1.4B 50M 78.2⇤ 57.5⇤ 38.9 68.2 61.5 – 1487.5 60.6 56.7 58.2 – –
LLaVA-1.5 [38] Vicuna-1.5-7B 336 0.6M 0.7M 78.5⇤ 62.0⇤ 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 63.4 30.5
LLaVA-1.5 [38] Vicuna-1.5-13B 336 0.6M 0.7M 80.0⇤ 63.3⇤ 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 70.7 35.4

VILA-7B (ours) Llama-2-7B 336 50M 1M 79.9⇤ 62.3⇤ 57.8 68.2 64.4 85.5 1533.0 68.9 61.7 61.1 69.7 34.9
VILA-13B (ours) Llama-2-13B 336 50M 1M 80.8⇤ 63.3⇤ 60.6 73.7 66.6 84.2 1570.1 70.3 64.3 62.8 73.0 38.8

+ShareGPT4V Llama-2-13B 336 50M 1M 80.6⇤ 63.2⇤ 62.4 73.1 65.3 84.8 1556.5 70.8 65.4 61.4 78.4 45.7

Table 5. Comparison with state-of-the-art methods on 12 visual-language benchmarks. Our models consistently outperform LLaVA-1.5 under
a head-to-head comparison, using the same prompts and the same base LLM (Vicuna-1.5 is based on Llama-2), showing the effectiveness of
visual-language pre-training. We mark the best performance bold and the second-best underlined. Benchmark names are abbreviated due to
space limits. VQA-v2 [25]; GQA [29]; VisWiz [26]; SQAI: ScienceQA-IMG [41]; VQAT: TextVQA [55]; POPE [36]; MME [24]; MMB:
MMBench [40]; MMBCN: MMBench-Chinese [40]; SEED: SEED-Bench [33]; LLaVAW: LLaVA-Bench (In-the-Wild) [39]; MM-Vet [68].
⇤The training images of the datasets are observed during training. We also tried adding the ShareGPT4V [13] to the SFT blend on top of
VILA-13B (last row), leading to a significant improvement on LLaVA-Bench and MM-Vet (marked in green).

Size Model MMLU [27] BBH [58] DROP [22]

7B

Llama-2 46.0% 32.0% 31.7%
Llama-2+SFT 51.8% 39.3% 53.1%
Vicuna-1.5 49.8% 36.9% 29.2%

VILA 50.8% 38.5% 52.7%

13B

Llama-2 55.7% 37.5% 41.6%
Llama-2+SFT 54.3% 43.2% 59.2%
Vicuna-1.5 55.8% 38.4% 43.6%

VILA 56.0% 44.2% 63.6%

Table 6. VILA maintains competitive accuracy on text-only bench-
marks. There is a small gap compared to the text-only model under
7B; but the accuracy is even better under 13B.

LLaVA-1.5 [38]), our model achieves consistent improve-
ments over most datasets at different model sizes under a
head-to-head setting (using the same prompts and base LLM;
Vicuna-1.5 is based on Llama-2). Remarkably, we 7B model
is able to outperform LLaVA-1.5 13B on VisWiz [26] and
TextVQA [55] by a large margin thanks to the pre-training.
Our 7B model even outperforms the 13B LLaVA model on
these datasets. Our model also has multi-lingual capability
despite the vision-language instruction data is in English, out-
performing LLaVA-1.5 on MMBench-Chinese benchmark.
Our results demonstrates the benefits of vision-language
pre-training on downstream tasks, even when using a high-
quality instruction tuning dataset [38].

Text-only performance. Our goal is to augment an LLM
to support visual inputs. It is essential that the model can

retain the text-only capability. Therefore, we further evaluate
the text-only performance of the models under three bench-
marks: MMLU [27], BBH [58], and DROP [22] in Table 6.
We did not choose benchmarks like MT-Bench [72] since
text instrution tuning is not the focus of the work. Overall,
our model achieves performance as Llama-2 fine-tuned with
the same text SFT data: the accuracy of our 7B model is a
bit lower, while the 13B is higher. We suspect the smaller
model may suffer from a larger text performance degradation
during the pre-training, as observed in [20].

4.3. Qualitative Evaluation
Here we study how visual language pre-training enables new
capabilities for the model. Part of the image samples are
taken from [6, 14, 65].

Multi-image reasoning. Thanks to the pre-training, our
model has the ability to reason over multiple images, de-
spite the SFT data is composed of single-image samples.
We provide two examples in Figure 6. In the first example,
our model is able to figure out the common object (i.e., a
flamingo) across the three images and the different art styles
of each one, while the LLaVA model failed. The LLaVA
model hallucinates and cannot distinguish the information
from different input images. In the second example, our
model is able to find one of the differences (i.e., the head-
wear) out of the two.

In-context learning. In-context learning is an important
characteristic of LLMs, allowing people to prompt the LLM
with few-shot samples to enable new tasks. We provide in-
context learning samples in Figure 7. Interestingly LLaVA-



VeCLIP

• Better captioning pipeline for VLMs and 
dataset (VeCap) 

• Ethics check (does the LLM reply: “I 
am sorry that I cannot …”) 

• LLM Knowledge Fusion: Rephrase the 
following two sentences into one… 

• Better CLIP model

VeCLIP: Improving CLIP Training via Visual-enriched Captions, Lai etal 2023

Figure 2. An overview of the scalable VeCap recaptioning piepline. First, we focus on exploiting visual concepts in images via leveraging a multimodal
LLM (LLaVA) to describe the image with a designed prompt independent of AltText to generate Visual-enriched Captions (VeC). Second, we leverage an
LLM to do ethical check and fuse the concepts from both AltText and VeC to generate the final caption, denoted as VeCap.

component on the generated dataset. This trade-off, however,
may limit its capacity to comprehend more intricate instruc-
tions. Thus, we adopt a straightforward yet potent prompt,

“Describe the image concisely, less than 20 words”, allowing
LLaVA to generate visual concepts directly from the image
autonomously. We denote this captions generated by LLaVA
as xTv. Subsequently, the image-text pair is converted as
(xI , xTv).

3.3. Scalable LLM Rewrite for Concept Fusion
Given the limited language capacity of LLaVA, we only
use LLaVA to extract all possible visual clues. Then, we
employ LLMs to refine the caption by fusing both the knowl-
edge from AltText xT and the novel visual concepts from
xTv. This step has three main advantages: 1) It ensures
the retention of information delineated in AltText, thereby
amplifying the informativeness of the caption; 2) It can serve
as a form of “strong augmentation” in textual data, character-
ized by a profound restructuring of sentence syntax instead
of focusing on word-level modifications used in existing lan-
guage augmentation techniques [37, 40]; 3) It can mitigate
the “hallucination” issue arising from large vision-language
models (e.g., LLaVA) to ensure that the entity described in
the ultimate caption is present in the image.

Generating rewrites for a vast corpus of texts using closed-
source models like ChatGPT or Bard is impractical, consider-
ing the substantial financial costs and time incurred through
API utilization. Therefore, to facilitate the rewriting tasks on

a large-scale dataset, we turn to open-source state-of-the-art
LLMs. Due to the license issue, we select Vicuna-1.1 [48],
renowned for its robust performance in text completion tasks,
as one example of LLM rewriting in this study. We formulate
a context input as the following three components. First, we
include a sentence designed to apprise the LLM of the task,
specifically, rewriting and fusing two attached sentences.
This serves as an initial contextual cue to orient the LLM
towards comprehending the overarching objective. Second,
we impose several constraints on the ultimate output. For in-
stance, our goal is to position attributes prior to noun entities,
all while refraining from introducing any novel semantic
interpretations. Furthermore, it is essential that the sentence
refrains from commencing with the phrase “The image” and
instead directly expounds upon all-encompassed concepts.
Finally, the last part of the context includes two sentences (xv

and xTv) that require fusing and rewriting, followed by the
separation symbol. This ensures that the LLM is furnished
with the specific texts to be fused and rewritten as part of
its context input. By integrating these three components, we
establish an all-encompassing context that steers the LLM
towards proficiently crafting diverse and knowledge-fused
text rewrites.

Scalable batch-inference process. Employing the
crafted context input as a prompt, Vicuna showcases its profi-
ciency in executing text completion and producing rephrased
renditions of the associated text samples. However, single-
item inference may be time-consuming and not scalable for
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Vision language models

• Architectures stabilized 
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Vision language models

• Data matters 

• Innovations in training and data yield 
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