Opject Detection
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Image classification

Task car

. Assign a single label to image
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Image Credit: https://en.wikipedia.org/wiki/FileTiverton_Gazette Newsroom.JPG
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https://en.wikipedia.org/wiki/File:Tiverton_Gazette_Newsroom.JPG

Credit: Frans de Waal  https://www.youtube.com/watch!v=meilU6 I xysCg
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Opject Detection - Datasets

MbS COCO

. 120k training images
- 30 categories
- BOX + segmentation annotations

- For almost all objects
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Microsoft coco: Common objects in context, Lin et al,, 2014



Opject detector

RCNN

Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., 2014



Opject detector

RCNN

- For any potential box
- Heuristic: Object or not
- Crop Image
. Classity

- Very slow



Opject detector

FasterRCNN: 2 stage detectors

Faster R-CNN: Towards real-time object detection with region proposal networks, Ren et al., 2017



Opject detector

FasterRCNN: 2 stage detectors

- Encode image using CNN
- For every pixel / patch enumerate n boxes
- Predict “objectness”
- Crop feature map
» Classity
» Fast

- Not end-to-end



Opject detector

YOLO

You only look once: Unified, real-time object detection, Redmon et al., 2016



Opject detector

YOLO: 1 stage detectors

- Encode image using CNN

- For every pixel / patch enumerate n
DOXES

. Predict class or background

e Faster

« Almost end-to-end



Why do we use boxes”?

- Reduction to image classification

- Image classifications works very well
- Easy to annotate
- Decent distance measure

- Qverlap
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Reasons not to use boxes

. Too many boxes O(W?H?)

- Anchors and assignment (training
- Non-maxima suppression (testing

- Easy to miss oddly shaped objects




Simpler opject detection
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Opjects as points

Objects as Points, Zhou etal,, 2019



Opjects as points

Barter Island Studies
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Obiject Detector

Objects as Points

- Detect center points
. Predict class, width and height
- Fast and accurate

. Almost end-to-end



Opject detector
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Opject detector

B TR

- Encode image using CNN or ViT
- Define Object Queries
- Transform them into detections
- Cross attend to image

. First end-to-end detector

End-to-end object detection with transformers, Carion et al., 2020



3D Detection

- Option 1: Top-Down 2D Detection
- Often relies on LIDAR sensor
- Option 2: Depth prediction

.« Project 2D detections to 3D using
depth prediction
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3D Object Detection

Center-based 3D Object Detection and Tracking, Yin etal 2021

Lift, Splat, Shoot: Encoding Images From Arbitrary Camera Rigs by Implicitly Unprojecting to 3D, Philion etal 2020
BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation, Liu etal 2023



Opject detectors
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Trend 1

« Transformer (cross-attention) based
architectures dominate

- End-to-end trainable architectures
make up the vast majority of current
detectors




Image Classitication
Trend 2

* Finding objects is easy, naming them
is harder

. Detection datasets can be smaller
than classification or captioning




Barter Island Studies

Opject detectors

>

Trend 3

« Technology is mature

- Used in production

- In vehicles, photo search,
surveillance

- With sufficient data, detection has
good solutions

. Loosing popularity
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