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Task: Image segmentation

- Group pixels
- Same object: Instance segmentation
- Same “stuff”; Semantic segmentation

- Same part: Part segmentation




Semantic segmentation

- Group pixels according to their
semantic class

- Does not distinguish identities
. Segments objects and stuff

- Easiest to train and evaluate




Fully convolutional networks

. Semantic segmentation by classifying
each pixel

. Fully convolutionally

- Cross entropy loss at every pixel

Fully Convolutional Networks for Semantic Segmentation, Shelhamer et al,, 2015



UNet, Hourglass

. Semantic segmentation by classifying
each pixel

- Down and up-sampling architectures
- More accurate
- Higher output resolution

. Still efficient

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger etal 2016
Stacked Hourglass Networks for Human Pose Estimation, Newell etal 2016



DepthPro

Transtformer-based architecture

. Fixed resolution, aspect ratio

Trained on

- Real-world depth data (Stage 1)
Synthetic data (Stage 1+ 2)

Supervise depth + gradients

Depth Pro: Sharp Monocular Metric Depth in Less Than a Second, Bochkovskil etal 2024
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Task: Instance segmentation

. Segment only objects
- Segment and label each instance

- Extension of object detection




Task: Panoptic segmentation

. Segment instances and stuff

« Combines semantic and instance
segmentation in a single task




Datasets: Mo COCO

- 80 classes
- 200k images

- 1.5M objects

- Both instance and stuff labels

Microsoft coco: Common objects in context, Lin et al,, 2014



Datasets: Driving

- Semantic segmention
- Cityscapes

- Mapillary

Image source : Cityscapes dataset

'he Crtyscapes Dataset for Semantic Urban Scene Understanding, Cordts et al., 2016
‘he Mapillary Vistas Dataset for Semantic Understanding of Street Scenes, Neuhold et al,, 2017




Datasets: Simulators

. Segmentation at no additional cost
from rendering engine

- Examples

- GIAYV

. Carlo Releaser0.9.5

- Habitat

Playing for data: Ground truth from computer games, Richter et al., 2016
Free supervision from video games, Krahenbuhl, 2018



MaskRCNN

 Instance segmentation actlvathn.\RA

- Segmentation by detection
A/pro osals

Poollng.

Bounding box
‘egression

Classification

Mask

Mask R-CNN, He et al., [CCV 2017/



Mask’Former

- DETR-style detector
- Predict an object mask at every layer
- Use mask to shape attention

- Can do semantic, instance, panoptic
segmentation with one architecture

Masked-attention mask transtormer for universal image
segmentation, Cheng et al., CVPR 2022
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valid mask valid mask

lightweight mask decoder

Segment Anytning
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Segment Anything, Kirillov et al., ICCV 2023
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- Generate “synthetic” dato
- Use ground truth mask

. Sample point

. Inference: Run SAM on dense grid and
deduplicate

« |ssue: Data



Data pipeline
11M high-res images

. Assisted-manual stage

. Labelers select foreground /
nackgrouna

- SAM produces masks
- Semi-automatic stage

- Run SAM densely, annotate missing
objects

- Fully automatic stage
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transformer
CNN > encoder-
decoder

Segmentation
Trend 1

set of image features

« Semantic segmentation is done

Task lost its popularity
- Early successful applications:

- Kinect, Lane boundary detection in AVs
- Not clear if it's worth the annotation cost

- Dense prediction still very active (i.e. for
monocular depth prediction)

. Instance segmentation still very active (SAM)



Segmentation
Trend 2

o Architectures become more general
. Instance -> Panoptic -> Anything

- Segment Anything (and followup
work) greatly simplity segmentation

- No more class-specific dataset
‘equired

. Off-the-shelf models are useful



Segmentation
Trend 3

« Segmentation less tied to labels

. Instance segmentation seems to be
abel independent

- Data can be masks only (at scale)
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