Segmentation

Philipp Krähenbühl, UT Austin

Task: Image segmentation

- Group pixels
 - Same object: Instance segmentation
 - Same "stuff": Semantic segmentation
 - Same part: Part segmentation

Semantic segmentation

- Group pixels according to their semantic class
 - Does not distinguish identities
 - Segments objects and stuff
 - Easiest to train and evaluate

Fully convolutional networks

- Semantic segmentation by classifying each pixel
 - Fully convolutionally
 - Cross entropy loss at every pixel

Fully Convolutional Networks for Semantic Segmentation, Shelhamer et al., 2015

UNet, Hourglass

- Semantic segmentation by classifying each pixel
 - Down and up-sampling architectures
- More accurate
 - Higher output resolution
 - Still efficient

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger etal 2016 Stacked Hourglass Networks for Human Pose Estimation, Newell etal 2016

Depth Estimation DepthPro

- Transformer-based architecture
 - Fixed resolution, aspect ratio
- Trained on
 - Real-world depth data (Stage 1)
 - Synthetic data (Stage 1 + 2)
 - Supervise depth + gradients

Depth Pro: Sharp Monocular Metric Depth in Less Than a Second, Bochkovskii etal 2024

Task: Instance segmentation

- Segment only objects
 - Segment and label each instance
 - Extension of object detection

Task: Panoptic segmentation

- Segment instances and stuff
 - Combines semantic and instance segmentation in a single task

Datasets: MS COCO

- 80 classes
- 200k images
 - 1.5M objects
 - Both instance and stuff labels

Microsoft coco: Common objects in context, Lin et al., 2014

Datasets: Driving

- Semantic segmention
 - Cityscapes
 - Mapillary

The Cityscapes Dataset for Semantic Urban Scene Understanding, Cordts et al., 2016 The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes, Neuhold et al., 2017

Image source : Cityscapes dataset

Datasets: Simulators

- Segmentation at no additional cost from rendering engine
- Examples
 - GTA V
 - Carla
 - Habitat

Playing for data: Ground truth from computer games, Richter et al., 2016 Free supervision from video games, Krähenbühl, 2018

MaskRCNN

- Instance segmentation
- Segmentation by detection

Mask R-CNN, He et al., ICCV 2017

Mask2Former

- DETR-style detector
- Predict an object mask at every layer
 - Use mask to shape attention
- Can do semantic, instance, panoptic segmentation with one architecture

Masked-attention mask transformer for universal image segmentation, Cheng et al., CVPR 2022

AR@100 on COCO val2017

)
r	У	
1	es	

Segment Anything

- MaskFormer-style segmentation network with queries from
 - Points
 - Boxes
 - Regions
 - Text descriptions

Segment Anything, Kirillov et al., ICCV 2023

Training

- Generate "synthetic" data
 - Use ground truth mask
 - Sample point
- Inference: Run SAM on dense grid and deduplicate
- Issue: Data

Data pipeline 11M high-res images

- Assisted-manual stage
 - Labelers select foreground / background
 - SAM produces masks
- Semi-automatic stage
 - Run SAM densely, annotate missing
 objects
- Fully automatic stage

Segment Anything

- MaskFormer-style segmentation network with queries from
 - Points (from segmentation)
 - Boxes (from segmentation)
 - Regions (from segmentation)
 - Text descriptions (from CLIP model)

Segmentation Trend 1

Semantic segmentation is done

- Task lost its popularity
- Early successful applications:
 - Kinect, Lane boundary detection in AVs
- Not clear if it's worth the annotation cost
- Dense prediction still very active (i.e. for monocular depth prediction)
- Instance segmentation still very active (SAM)

Segmentation Trend 2

Architectures become more general

- Instance -> Panoptic -> Anything
- Segment Anything (and followup work) greatly simplify segmentation
 - No more class-specific dataset
 required
- Off-the-shelf models are useful

Segmentation Trend 3

Segmentation less tied to labels

- Instance segmentation seems to be label independent
- Data can be masks only (at scale)

References

- [1] Fully Convolutional Networks for Semantic Segmentation, Shelhamer et al., 2015
- [2] U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger etal 2016
- [3] Stacked Hourglass Networks for Human Pose Estimation, Newell etal 2016
- [4] Depth Pro: Sharp Monocular Metric Depth in Less Than a Second, Bochkovskii etal 2024
- [5] The Cityscapes Dataset for Semantic Urban Scene Understanding, Cordts et al., 2016
- [6] The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes, Neuhold et al., 2017
- [7] Playing for data: Ground truth from computer games, Richter et al., 2016
- [8] Free supervision from video games, Krähenbühl, 2018
- [9] Mask R-CNN, He et al., ICCV 2017
- [10] Masked-attention mask transformer for universal image segmentation, Cheng et al., CVPR 2022
- [11] Segment Anything, Kirillov et al., ICCV 2023