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Auto-regressive generation



Generative models

• Two tasks of a generative model  

• Sampling:  

• Density estimation: 

P(X)

x ∼ P(X)

P(X = x)
Deep Network Deep Network

P(X)



Generative modeling is hard

• Density estimation  

• How to ensure  for all  

• Impossible to compute (in general) 

• Sampling  

• What is the input to the network?

P(X = x)

∑
x

P(x) = 1 x

x ∼ P(X)

Deep Network Deep Network

P(X)



Density estimation based  

• Learn special form of  

• Model specific sampling / generation

P(X)

P(X)

Two kinds of models

Generative models

Sampling based  

• Sample  

• Learn transformation 

•  or 

x ∼ P(X)

z ∼ P(Z)

P(x |z) f : z → x

Deep 
Network

z Deep 
Network P(X)



Recap

• VAE 

• Image -> latent space -> Image 

• Loss encourages Gaussian latent 

• GAN 

• Gaussian -> Image 

• Loss compares distributions 

• Flow-based 

• Gaussian  Image 

• Requires Invertible architecture
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Auto-regressive models

 

•  

• Basis of most LLM models 

• Easy estimation of  

• Easy sampling 
 

• Slow sampling

P(x) = P(x1)P(x2 |x1)P(x3 |x1, x2)P(x4 |x1…x3)…

P(xi |x1…xi−1) = softmax( f(x1…xi−1))

P(x)

x1 ∼ P(X1); x2 ∼ P(X2 |x1)

[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016 
[2] Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer. Songwei Ge, et al. 2022



Example: WaveNet

• Input: Raw waveform  

• Output: Quantized next value 
 

• Model:  

• Conditioned model:

x1…t−1

xt ∈ {1…256}

P(x) =
T

∏
t=1

P(xt |x1…t−1)

P(x |h) =
T

∏
t=1

P(xt |x1…t−1 |h)

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016



Example: PixelCNN

• Input: Raw pixels  

• Output: Quantized next color value 
 

• Model:  

• Conditioned model:

x1…t−1

xt ∈ {1…256}

P(x) =
T

∏
t=1

P(xt |x1…t−1)

P(x |h) =
T

∏
t=1

P(xt |x1…t−1 |h)

[1] Conditional Image Generation with PixelCNN Decoders. Aaron van den Oord, et al. 2016



Issues

Auto-regressive models

 

• Difficult learning problem for long 
sequences (requires good model) 

• Solution: Tokenization/Vector-
Quantization (next class) 

• More complex  

• Shorter sequence

P(x) = P(x1)P(x2 |x1)P(x3 |x1, x2)P(x4 |x1…x3)…

xi

[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016 
[2] Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer. Songwei Ge, et al. 2022



Generation vs Compression

• Knowing  leads to best lossless 
compression within one bit 

•  

• Why?

P(x)

#bits = ⌊−log2 P(x)⌋ + 1

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020 
[2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019



P(X < x)

 bit lossless compression⌊−log2 P(x)⌋ + 1

Arithmetic coding

• Sort  lexicographically 

• Compute CDF  

• Split interval between 0…1 into  
numbers 

• Since , at least one 

number  will end in range
 

•  is our  code

x

P(X < x)

2⌊−log2 P(x)⌋+1

2⌊−log2 P(x)⌋+1 >
1

P(x)
n

P(X < x)…P(X ≤ x)

n ⌊−log2 P(x)⌋ + 1

P(x)

P(X > x)

1

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020 
[2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019



Arithmetic coding in practice

• CDF  generally hard to 
compute 

• Easy for  

•  

• Leads to adaptive arithmetic coding

P(X < x)

P(x) =
T

∏
t=1

P(xt |x1…t−1)

P(X ≤ x) =
T

∏
t=1

P(Xt ≤ xt |x1…t−1)

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020 
[2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019



Density estimation based  

• Learn special form of  

• Model specific sampling / generation

P(X)

P(X)

Two kinds of models

Generative models

Sampling based  

• Sample  

• Learn transformation 

•  or 

x ∼ P(X)

z ∼ P(Z)

P(x |z) f : z → x

Deep 
Network

z Deep 
Network P(X)
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