Auto-regressive generation

Philipp Krähenbühl, UT Austin

Generative models

- Two tasks of a generative model P(X)
 - Sampling: $x \sim P(X)$
 - Density estimation: P(X = x)

Deep Network

P(X)

Deep Network

Generative modeling is hard

• Density estimation P(X = x)

How to ensure
$$\sum_{x} P(x) = 1$$
 for all x

- Impossible to compute (in general)
- Sampling $x \sim P(X)$
 - What is the input to the network?

Deep Network

Deep Network

Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

Recap

- VAE
 - Image -> latent space -> Image
 - Loss encourages Gaussian latent
- GAN
 - Gaussian -> Image
 - Loss compares distributions
- Flow-based
 - Gaussian \leftrightarrow Image
 - Requires Invertible architecture

Variational Auto Encoder (VAE)

Generative Adversarial Network (GAN)

Flow-based models

Auto-regressive models

 $P(x) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)P(x_4 | x_1...x_3)...$

- $P(x_i | x_1 \dots x_{i-1}) = \operatorname{softmax}(f(x_1 \dots x_{i-1}))$
- Basis of most LLM models
- Easy estimation of P(x)
- Easy sampling $x_1 \sim P(X_1); x_2 \sim P(X_2 | x_1)$
 - Slow sampling

[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016 [2] Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer. Songwei Ge, et al. 2022

Example: WaveNet

- Input: Raw waveform $\mathbf{X}_{1...t-1}$
- Output: Quantized next value $\mathbf{x}_t \in \{1...256\}$

• Model:
$$P(\mathbf{x}) = \prod_{t=1}^{T} P(x_t | \mathbf{x}_{1...t-1})$$

• Conditioned model: $P(\mathbf{x} | \mathbf{h}) = \prod P(x_t | \mathbf{x}_{1...t-1} | \mathbf{h})$ t = 1

[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016

Example: PixelCNN

- Input: Raw pixels $\mathbf{X}_{1...t-1}$
- Output: Quantized next color value $\mathbf{x}_t \in \{1...256\}$

• Model:
$$P(\mathbf{x}) = \prod_{t=1}^{T} P(x_t | \mathbf{x}_{1...t-1})$$

• Conditioned model: $P(\mathbf{x} | \mathbf{h}) = \prod P(x_t | \mathbf{x}_{1...t-1} | \mathbf{h})$ t = 1

[1] Conditional Image Generation with PixelCNN Decoders. Aaron van den Oord, et al. 2016

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
)	0	0	0	0
)	0	0	0	0
	1 1 1)	1 1 1 1 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	11111111110000000000

African elephant

Coral Reef

Sandbar

Sorrel horse

Auto-regressive models

Issues

 $P(x) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)P(x_4 | x_1...x_3)...$

- Difficult learning problem for long sequences (requires good model)
- Solution: Tokenization/Vector-Quantization (next class)
 - More complex x_i
 - Shorter sequence

[1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016[2] Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer. Songwei Ge, et al. 2022

Generation vs Compression

- Knowing $P(\mathbf{x})$ leads to best lossless compression within one bit
 - #bits = $[-\log_2 P(\mathbf{x})] + 1$
- Why?

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020 [2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019

Arithmetic coding $|-\log_2 P(\mathbf{x})| + 1$ bit lossless compression

- Sort **x** lexicographically
 - Compute CDF $P(\mathbf{X} < \mathbf{x})$
 - Split interval between 0...1 into $2^{\lfloor -\log_2 P(\mathbf{x}) \rfloor + 1}$ numbers

• Since $2^{\lfloor -\log_2 P(\mathbf{x}) \rfloor + 1} > \frac{1}{P(\mathbf{x})}$, at least one

number *n* will end in range

 $P(\mathbf{X} < \mathbf{x}) \dots P(\mathbf{X} \le \mathbf{x})$

• *n* is our $|-\log_2 P(\mathbf{x})| + 1$ code

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020 [2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019

Arithmetic coding in practice

• CDF $P(\mathbf{X} < \mathbf{x})$ generally hard to compute

• Easy for
$$P(\mathbf{x}) = \prod_{t=1}^{T} P(x_t | \mathbf{x}_{1...t-1})$$

•
$$P(\mathbf{X} \le \mathbf{x}) = \prod_{t=1}^{T} P(X_t \le x_t | \mathbf{x}_{1...t-1})$$

Leads to adaptive arithmetic coding

[1] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020[2] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al. 2019

Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

References

- [1] WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, et al. 2016
- Songwei Ge, et al. 2022
- [3] Lossless Image Compression through Super-Resolution. Sheng Cao, et al. 2020
- 2019

• [2] Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer.

• [4] Practical Full Resolution Learned Lossless Image Compression. Fabian Mentzer, et al.