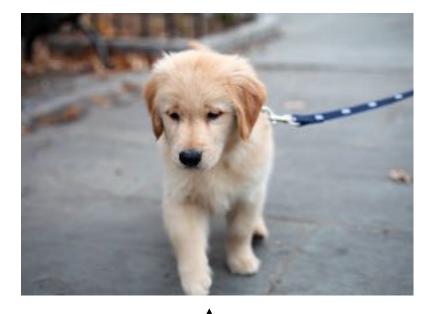
Philipp Krähenbühl, UT Austin

Generative models

- Two tasks of a generative model P(X)
 - Sampling: $x \sim P(X)$
 - Density estimation: P(X = x)



Deep Network

P(X)

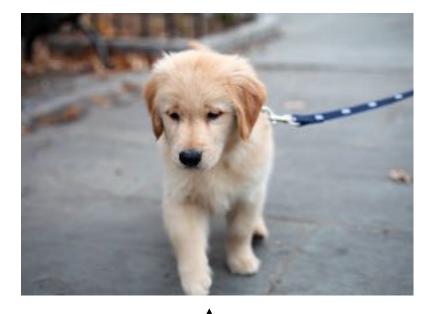
Deep Network

Generative modeling is hard

• Density estimation P(X = x)

How to ensure
$$\sum_{x} P(x) = 1$$
 for all x

- Impossible to compute (in general)
- Sampling $x \sim P(X)$
 - What is the input to the network?



Deep Network

P(X)

Deep Network

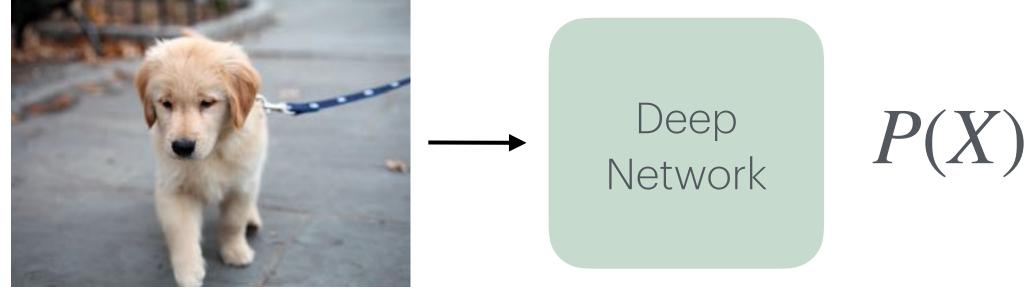
Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

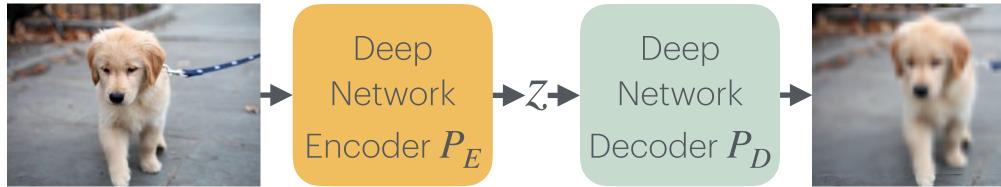
- Learn special form of P(X)
- Model specific sampling / generation



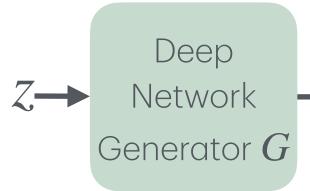
Recap

- VAE
 - Image -> latent space -> Image
 - Loss encourages Gaussian latent
- GAN
 - Gaussian -> Image
 - Loss compares distributions

Variational Auto Encoder (VAE)



Generative Adversarial Network (GAN)



Deep Network Discriminator **D** Fake

or

Real

• Assume generative $G: z \rightarrow x$ is invertible

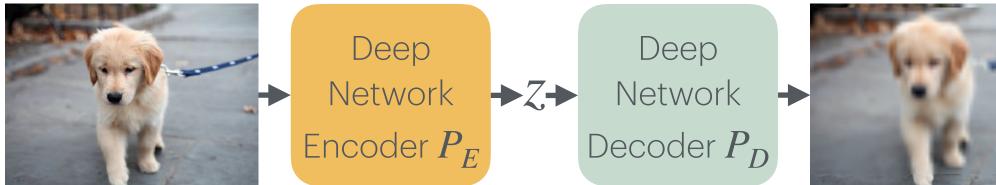
- G^{-1} exists and is easy to compute
- By definition $G: \mathbb{R}^N \to \mathbb{R}^N$
- Define $P(Z) = \mathcal{N}(0,1)$
 - Compute P(x)
 - Maximize $\log P(x)$ on training images

[1] Variational Inference with Normalizing Flows, Rezende etal 2015

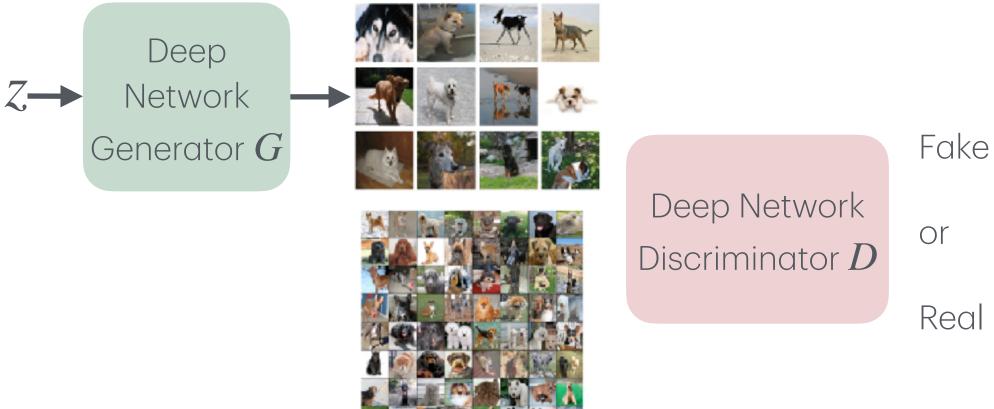
[2] Density estimation using Real NVP, Dinh etal 2016

[3] Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma etal 2018

Variational Auto Encoder (VAE)



Generative Adversarial Network (GAN)



Flow-based models

- Invertible $G: z \to x$ and $P(Z) = \mathcal{N}(0,1)$
- Change of variable formula

•
$$P(x) = P(z) \left| det\left(\frac{\partial z}{\partial x}\right) \right| = P(G^{-1}(x)) \left| det\left(\frac{\partial G^{-1}(x)}{\partial x}\right) \right|$$

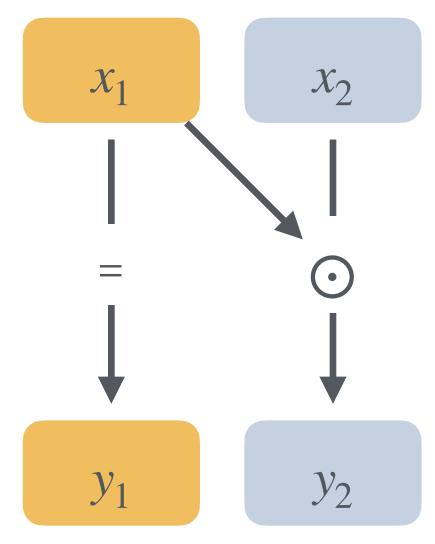
- Closed-form definition of P(x)
 - Only need invertible network and efficient determinant of Jacobean

Flow-based models

Invertible Networks

- Invertible Layer
 - Split inputs into two groups x_1, x_2
 - Split outputs into two groups y_1, y_2
 - $y_1 = x_1$ $y_2 = \exp(s(x_1)) \odot x_2 + t(x_1)$
 - Inverse $x_2 = \exp(-s(y_1)) \odot (y_2 - t(y_1))$ $x_1 = y_1$
- [1] Variational Inference with Normalizing Flows, Rezende etal 2015
- [2] Density estimation using Real NVP, Dinh etal 2016
- [3] Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma etal 2018

Invertible Layer

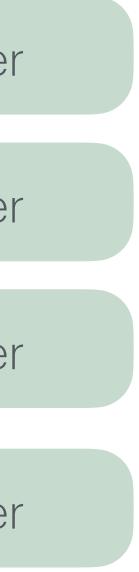


Invertible Layer

Invertible Layer

Invertible Layer

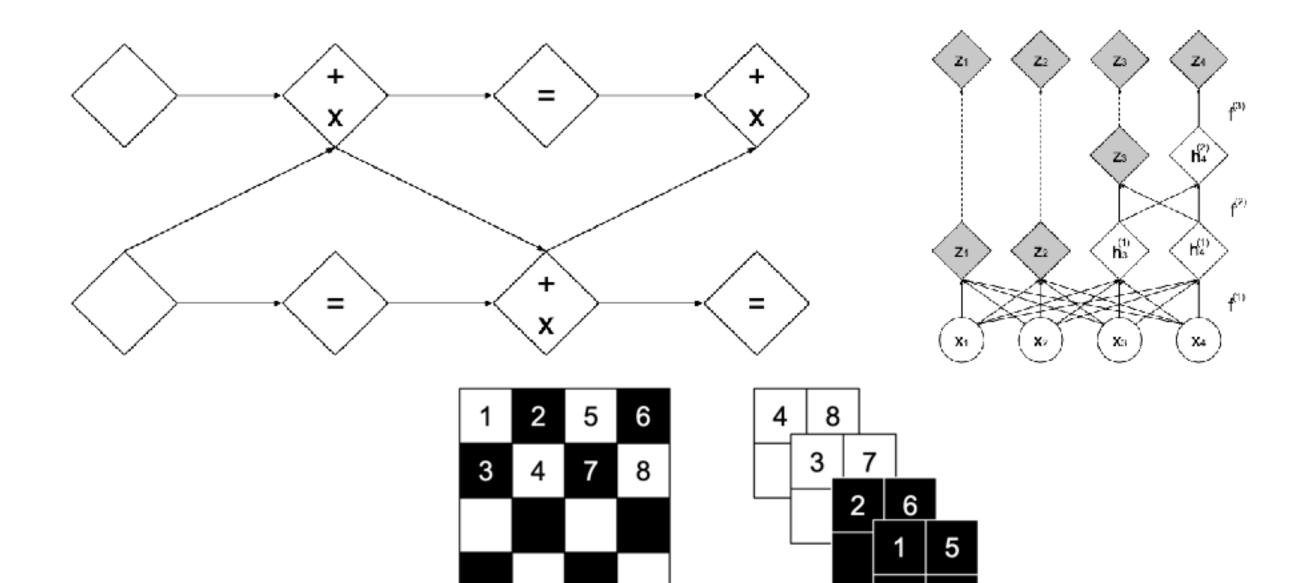
Invertible Layer



Invertible Networks

- Overall architecture
 - Alternate copy path
 - Coarse to fine (for efficiency)
 - Masked convolutions
 - Invertible 1x1 layers

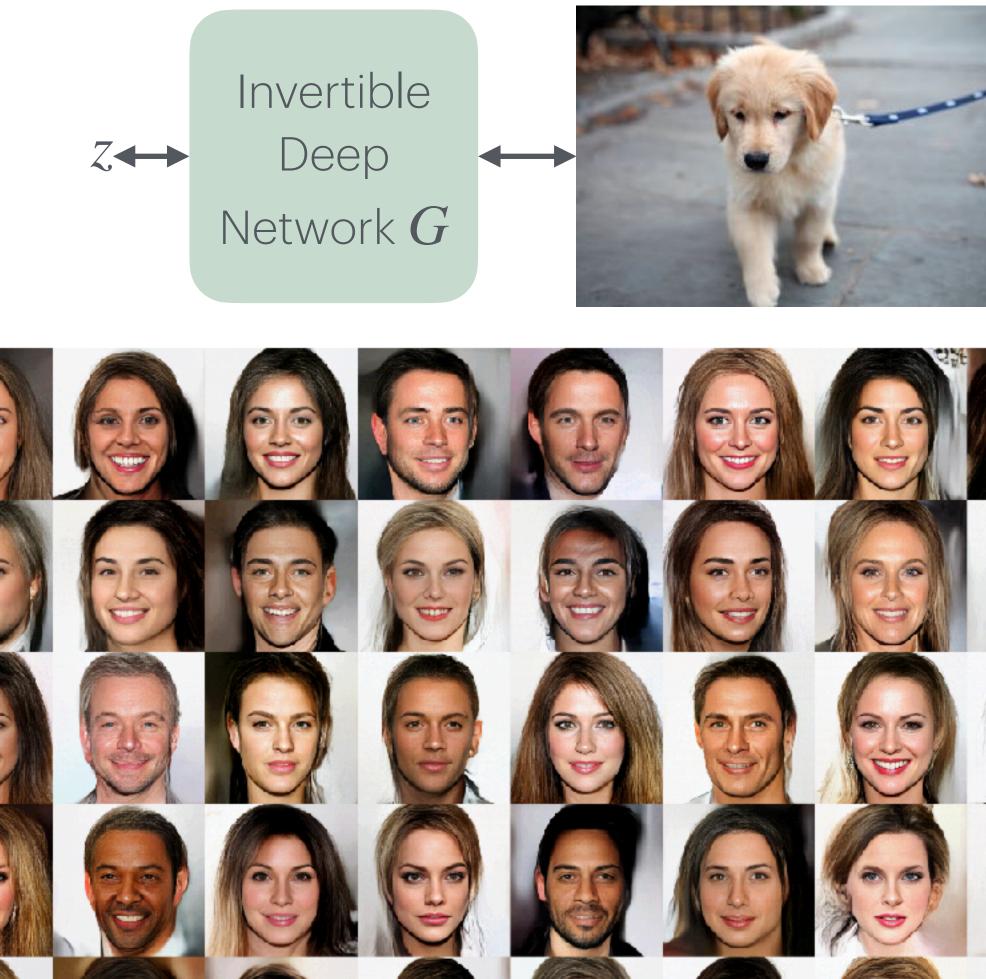
[1] Variational Inference with Normalizing Flows, Rezende etal 2015
[2] Density estimation using Real NVP, Dinh etal 2016
[3] Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma etal 2018



- Generation: $z \sim N(0,1)$ x = G(z)
- Very good results
- Stable training
- Very restrictive architecture
 - Invertible layers

[1] Variational Inference with Normalizing Flows, Rezende etal 2015
[2] Density estimation using Real NVP, Dinh etal 2016
[3] Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma etal 2018

Flow-based models



Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

References

- [1] Variational Inference with Normalizing Flows, Rezende et al. 2015.
- [2] Density estimation using Real NVP, Dinh et al. 2016.
- [3] Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma et al. 2018.