Philipp Krähenbühl, UT Austin

Generative models

- Two tasks of a generative model P(X)
 - Sampling: $x \sim P(X)$
 - Density estimation: P(X = x)

Deep Network

P(X)

Deep Network

Generative modeling is hard

• Density estimation P(X = x)

How to ensure
$$\sum_{x} P(x) = 1$$
 for all x

- Impossible to compute (in general)
- Sampling $x \sim P(X)$
 - What is the input to the network?

Deep Network

P(X)

Deep Network

Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

Variational auto-encoder A "probabilistic" auto-encoder

- Learn a model of $P(x) = P_D(x | z)P(z)$ with $P(z) = \mathcal{N}(z; 0, 1)$
 - Approximate $Q \approx P_E$
 - Maximize P(x) of data

[1] Auto-Encoding Variational Bayes, Kingma et al., ICLR 2014

- Learn a model of P(x)
 - Sampling distribution (model)

•
$$x = G(z); z \sim \mathcal{N}(0,1)$$

• Match data distribution

• $x \sim \mathcal{D}$

[2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014[3] Dog breed classification using part localization, Liu et al., ECCV 2012

Columbia University Dogs dataset [3]

- Objective: Match sampling distributions as two player game
 - Payer 1: Generator G
 - Generate images from noise
 - Payer 2: Discriminator *D* G
 - Tell real from fake images

[2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014

 \mathbf{G}

Deep Network Discriminator D

$\min \max E_{x \sim G} \left[\log D(x) \right] + E_{x \sim \mathcal{D}} \left[\log(1 - D(x)) \right] =$

 $\min \max E_{z \sim \mathcal{N}} \left| \log D(G(x)) \right| + E_{x \sim \mathcal{D}} \left| \log(1 - D(x)) \right|$

Minimizes Jensen-Shannon-Divergence $JSD(P,Q) = \max D_{KL}(P | M) + D_{KL}(\mathcal{D} | M)$

G

 $\min \max E_{z \sim \mathcal{N}} \left[\log D(G(x)) \right] + E_{x \sim \mathcal{D}} \left[\log(1 - D(x)) \right]$ G

[2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014

Deep Network Discriminator D

$\min \max E_{x \sim G} \left[\log D(x) \right] + E_{x \sim \mathcal{D}} \left[\log(1 - D(x)) \right] =$

Generative Adversarial Networks Optimization

 $\min_{G} \max_{D} E_{z \sim \mathcal{N}} \left[\log D(G(x)) \right] + E_{x \sim \mathcal{D}} \left[\log(1 - D(x)) \right]$

- Hard to optimize
 - Mathematically correct
 - For every step in G, run a full optimizer pass for D
 - In practice
 - One step G, one step D
 - Pray for convergence

[2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014

Deep Network Generator **G**

 \rightarrow

 $Z \rightarrow$

Deep Network Discriminator **D**

GANS work!

- Sampling is easy
- Learned pixel-distance
 - No blurriness
- Loss on distributions
 - Requires a few tricks

[4] Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al., ICLR 2019

Application Super resolution

- Supervised training task
 - Take high-res image, downsample
- GANs as loss
 - Leads to sharper reconstruction than just reconstruction

[5] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Ledig et al., CVPR 2017

Deep Net

Z
ightarrow

- Two player game
 - Generator: Transform noise into
 images
 - Discriminator: Tell difference between real and generated images
 - Leads to sharp images
 - Used in conditioned generation

[2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014

Deep Network Generator **G**

 \rightarrow

Deep Network Discriminator **D**

Generative models Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - $P(x \mid z)$ or $f: z \to x$

Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

References

- [1] Auto-Encoding Variational Bayes, Kingma et al., ICLR 2014 (<u>link</u>)
- [2] Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014 (<u>link</u>)
- [3] Dog breed classification using part localization, Liu et al., ECCV 2012 (link)
- [4] Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al., ICLR 2019 (<u>link</u>)
- [5] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Ledig et al., CVPR 2017 (<u>link</u>)