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nstruction tuning

. Teach a LLM to follow a certain
template in answering

- Tell LLM what to do

« Doesnottell LLM what nottodo

> I want to refocus my diet on only

eating Apples and supplements.

Let me provide information on how to
make the most of eating apples as a

primary food source.

xkxApple selection:*x*x Focus on eating a
variety of apples to ensure you get a
range of nutrients. Some apple varieties
are higher 1n certain nutrients than
others. For example:

* Granny Smith and Braeburn apples have
more malic acid, which can help with
digestion.

* Gala and Fuji apples contaln more
vitamins A and C.



RLHEP

Reinforcement Learning from Human Feedback

- Shape LLM outputs according to
human preference / ranking

Training language models to follow instructions with human feedback. OQuyang etal 2022
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Reinforcement Learning from Human Feedback

Step 1

Collect demonstration data,
and train a supervised policy.
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Step 2

Collect comparison data,
and train a reward model.
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Training language models to follow instructions with human feedback. Ouyang etal 2022

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
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RLHP

Reinforcement Learning from Human Feedback

- Step 1: Instruction tuning
- Human labeler writes prompt
. Plain, few-shot, customer-based
- Human labeler writes answer

. InstructGPT: 13k samples

Training language models to follow instructions with human feedback. Ouyang etal 2022

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went
to the moon...
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Reinforcement Learning from Human Feedback

- Step 2: Reward model learning
- Human labeler writes prompt
. Plain, few-shot, customer-based

« Human labeler ranks ansers

» InstructGPT: 33k samples (6.6k
annotator,
26.5k customer)

Training language models to follow instructions with human feedback. Ouyang etal 2022

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several mode|
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old
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Reinforcement Learning from Human Feedback

- Step 2: Reward model learning

. Train a small 6B reward model r(x, y)

. Loss pairwise preference (Bradley-

erry model)
=L

Training language models to follow instructions with human feedback. Ouyang etal 2022
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Step 2

Collect comparison data,
and train a reward model.

A prompt and
several mode|
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.
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Reinforcement Learning from Human Feedback

. Step 3: Reinforcement Learning

Training language models to follow instructions with human feedback. Ouyang etal 2022

A

. Collect interesting prompts

. InstructGPT: 32k samples (customer
data)

—]

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

b

Write a story
about frogs



R

—]

Reinforcement Learning from Human Feedback

. Step 3: Reinforcement Learning

« Fine-tune LLM to maximize reward

model r(x, y)

« PPO maximize:

E,

peto [(0,20) Viog P10 = BDg, | P10 | Py |0

- Action = predict next token

Training language models to follow instructions with human feedback. Ouyang etal 2022
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Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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Why use reinforcement learning?

- Sampling next tokens is non-

differentiable

« Tokens are discrete

- No gradient to sa

P

from reward funct

or

e different token

- Do we need to use complex deep RL

algorithms?

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

b

Write a story
about frogs



Reinforcement Learning from Human Feedback

» Step 3: RLOO

A

. Let's treat RLHF as a bandit problem

. Reinforce:
EyNP(-\x) [(l"(y, .X) _ b) Vl()g P(y ‘X)]

—]

- No sequential actions

- Action = generate a full response

Prompt:
> | want to refocus my diet on only eating
Apples and supplements.

sSure, here is
how you...
O
NIS IS
great ideaq...
O
O
would not
recommend...

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs. Ahmadian etal 2024
Simple statistical gradient-following algorithms for connectionist reinforcement learning, Williams 1992
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Reinforcement Learning from Human Feedback
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Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs. Ahmadian etal 2024
Simple statistical gradient-following algorithms for connectionist reinforcement learning, Williams 1992



TL;DR Summarize Anthropic-HH (Pythia) Anthropic-HH (LIlama)
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Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs. Ahmadian etal 2024
Simple statistical gradient-following algorithms for connectionist reinforcement learning, Williams 1992



RLHEP

Reinforcement Learning from Human Feedback

- RLHF alone degrades models
oerformance: Alignment Tax

- Solution:

- Add KL-divergence penalty between
Instruction-tuned and RLHF model

- Mix in pre-training data / gradient

Training language models to follow instructions with human feedback. OQuyang etal 2022
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> I want to refocus my diet on only
| eating Apples and supplements.

T{ | B While apples are a nutritious fruit,
relying solely on them as your primary
source of nutrition for an extended
period may not provide all the necessary
nutrients for optimal health.

» Give the LLM the ability to refuse
requests

- Help it judge what “‘good” answer are Here are some concerns with a strictly
apple—-based diet:
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