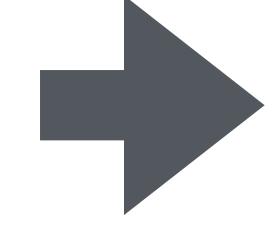
Structured Dialogues

Philipp Krähenbühl, UT Austin

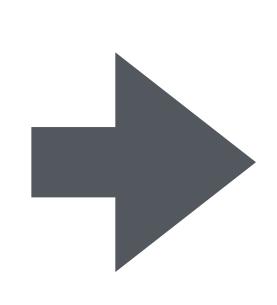
Full Picture Basic LLM

Pre-training



Datasets

Instruction tuning



RLHF / DPO

Datasets

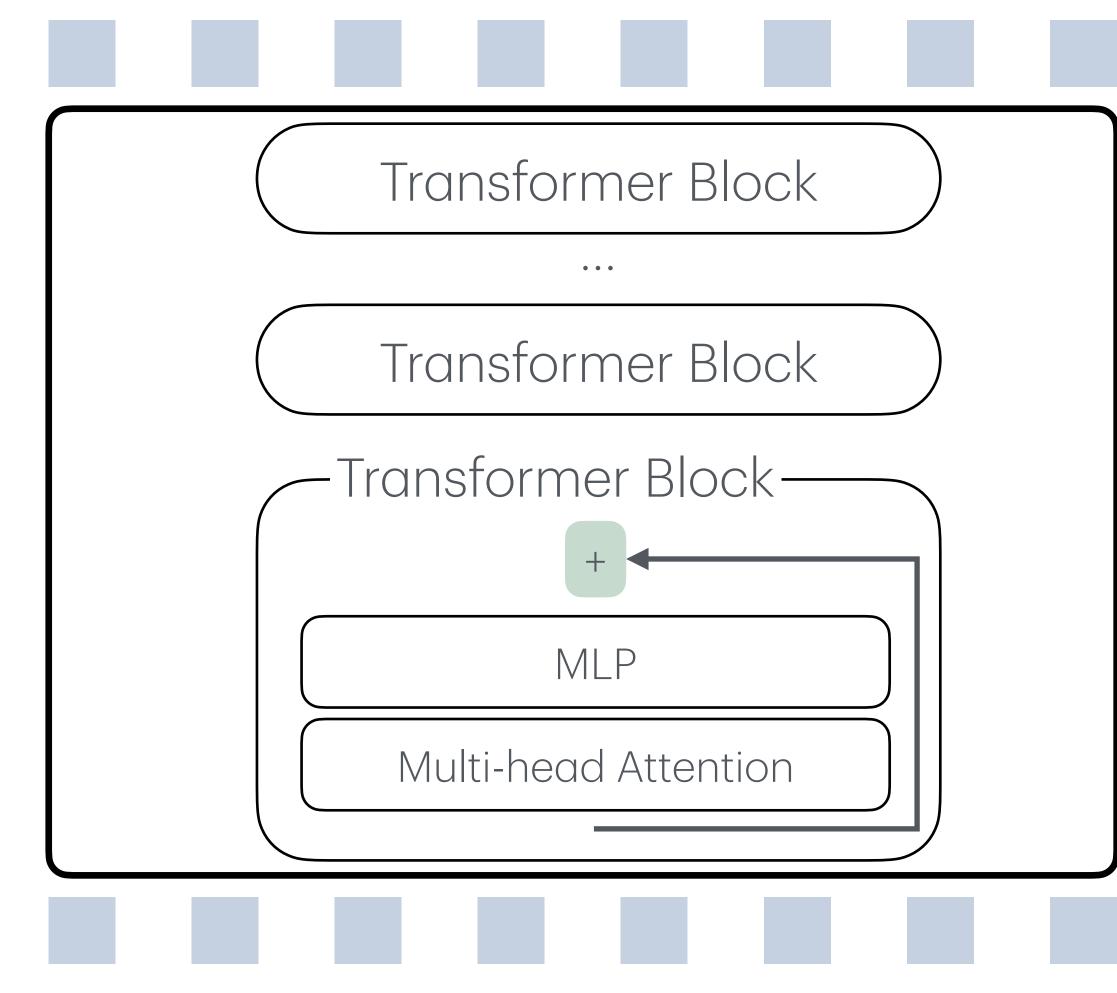
Datasets

Where does a LLM store information?

- Their weights
 - MLP and attention [1]
- Special tokens / activations [2,3]
 - Large activations or registers
- Their context

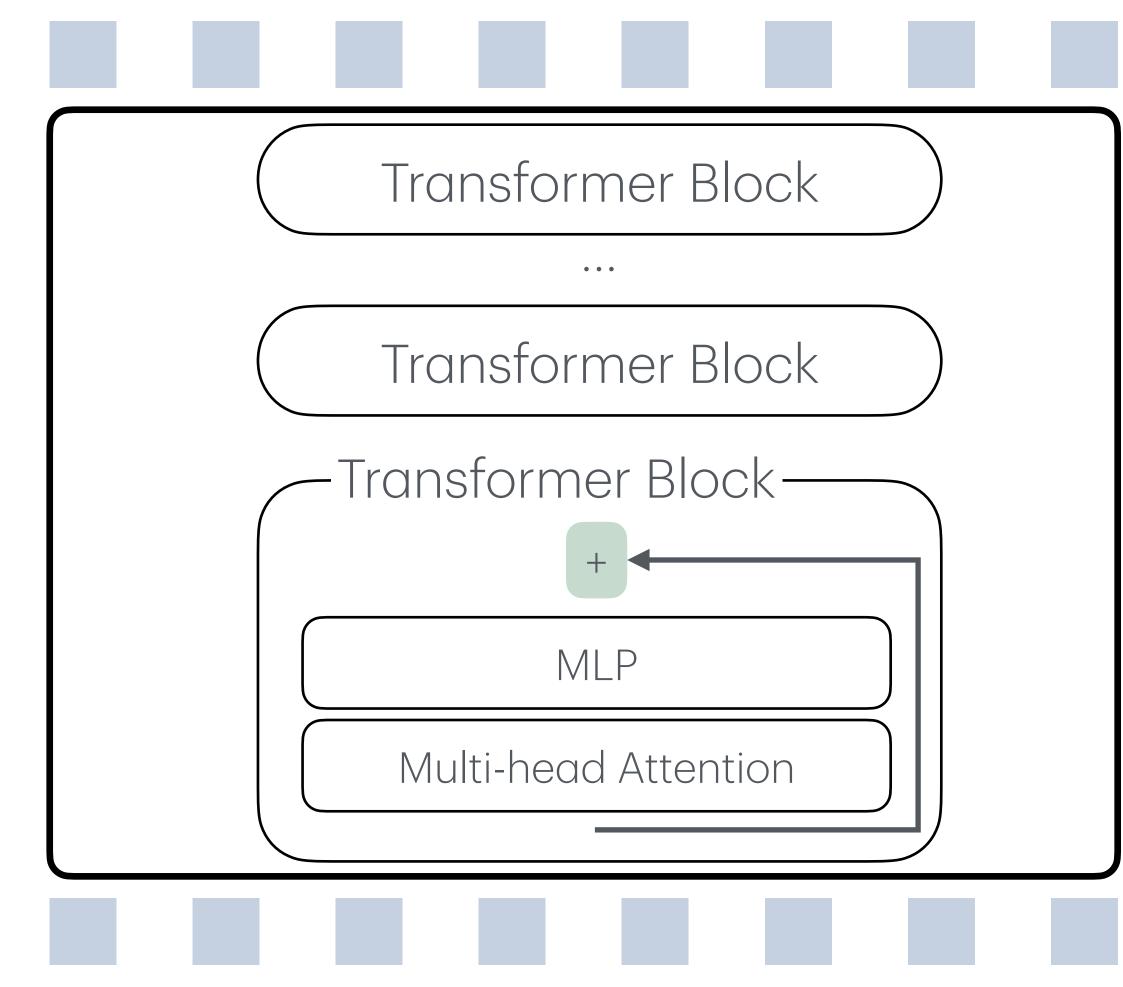
[1] Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws, Allen-Zhu 2024 [2] Vision Transformers Need Registers, Darcet etal 2023

[3] Massive Activations in Large Language Models, Sun etal 2024



Information in weights

- LLMs can store up to 2 bits of information per weight [1]
 - In MLP
 - In Attention
 - 2 bits require very long training and multiple (up to 1000) augmentations of same information



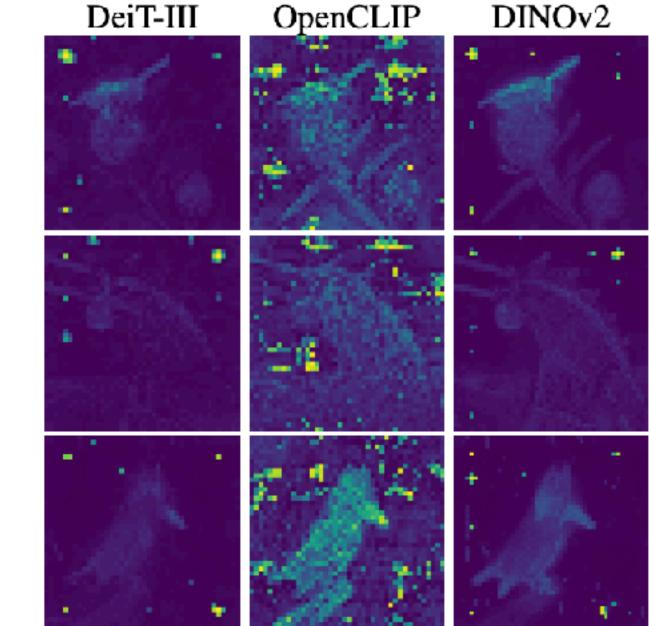
Special tokens / activations

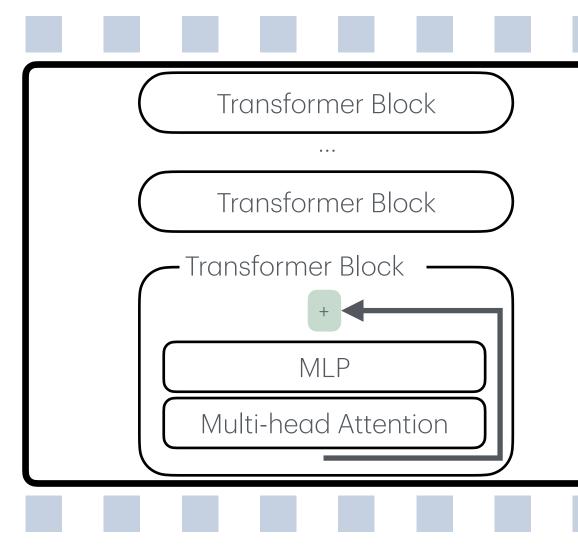
- LLMs use special tokens to store information
 - LLMs attend to <BOS> token
 - VLMs attend to background

[1] Vision Transformers Need Registers, Darcet etal 2023 [2] Massive Activations in Large Language Models, Sun etal 2024 Input

DeiT-III

OpenCLIP

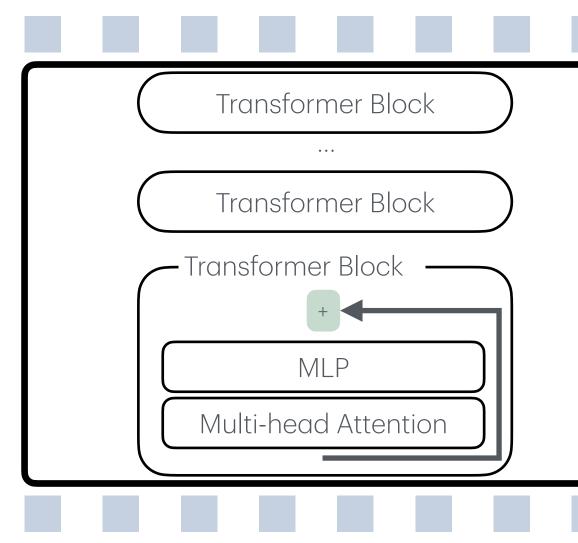




Context

- LLMs store information in their context
- Examples
 - System prompt
 - Retrieval Augmented Generation
 - •

[1] Vision Transformers Need Registers, Darcet etal 2023[2] Massive Activations in Large Language Models, Sun etal 2024



In context learning

- Describe the task
 - Give examples input output pairs
 - Then ask for your specific

Language Models are Few-Shot Learners, Brown etal 2020

Translate words from English to German using JSON as an output. Here are some examples Car {"English": "Car", "German": "Auto"} Sun {"English": "Sun", "German": "Sonne"} Moon

In context learning Why does it work?

- LLMs like repeating patterns
 - Likely exist in pre-training data
- Examples of in-context prompts and answers during training (instruction tuning, alignment)

Language Models are Few-Shot Learners, Brown etal 2020

Translate words from English to German using JSON as an output. Here are some examples Car {"English": "Car", "German": "Auto"} Sun {"English": "Sun", "German": "Sonne"} Moon

In context learning What does it work for?

- Formatting outputs
- Simple requests

Language Models are Few-Shot Learners, Brown etal 2020

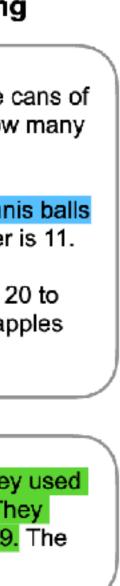
Translate words from English to German using JSON as an output. Here are some examples Car {"English": "Car", "German": "Auto"} Sun {"English": "Sun", "German": "Sonne"} Moon

Chain of thought

- Ask model to derive answer
 - Pre-instruction tuning: In-context example of reasoning
 - Post-instruction tuning
 - Ask model to think step-by-step before giving the answer
 - Guide model through thinking process

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei etal 2022

Standard Prompting Chain-of-Thought Prompting Model Input Model Input Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? tennis balls does he have now? A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to do they have? make lunch and bought 6 more, how many apples do they have? Model Output Model Output A: The cafeteria had 23 apples originally. They used A: The answer is 27. 🗙 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

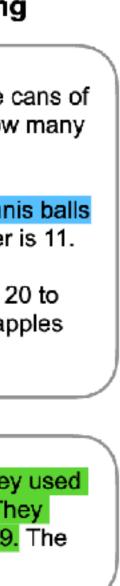


Chain of thought Why does it work?

- More output tokens = better performance
 - Delays making a decision
- Can work around tokenization issues
 - Break up numbers

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei etal 2022

Standard Prompting Chain-of-Thought Prompting Model Input Model Input Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? tennis balls does he have now? A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to do they have? make lunch and bought 6 more, how many apples do they have? Model Output Model Output A: The cafeteria had 23 apples originally. They used A: The answer is 27. 🗙 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

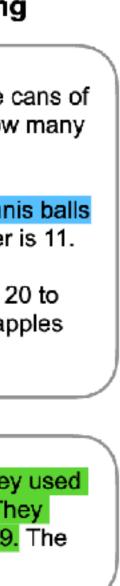


Chain of thought

- Order matters
 - Think first, then answer
 - Chain-of-BS: Ask model to give answer and justify it

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei etal 2022

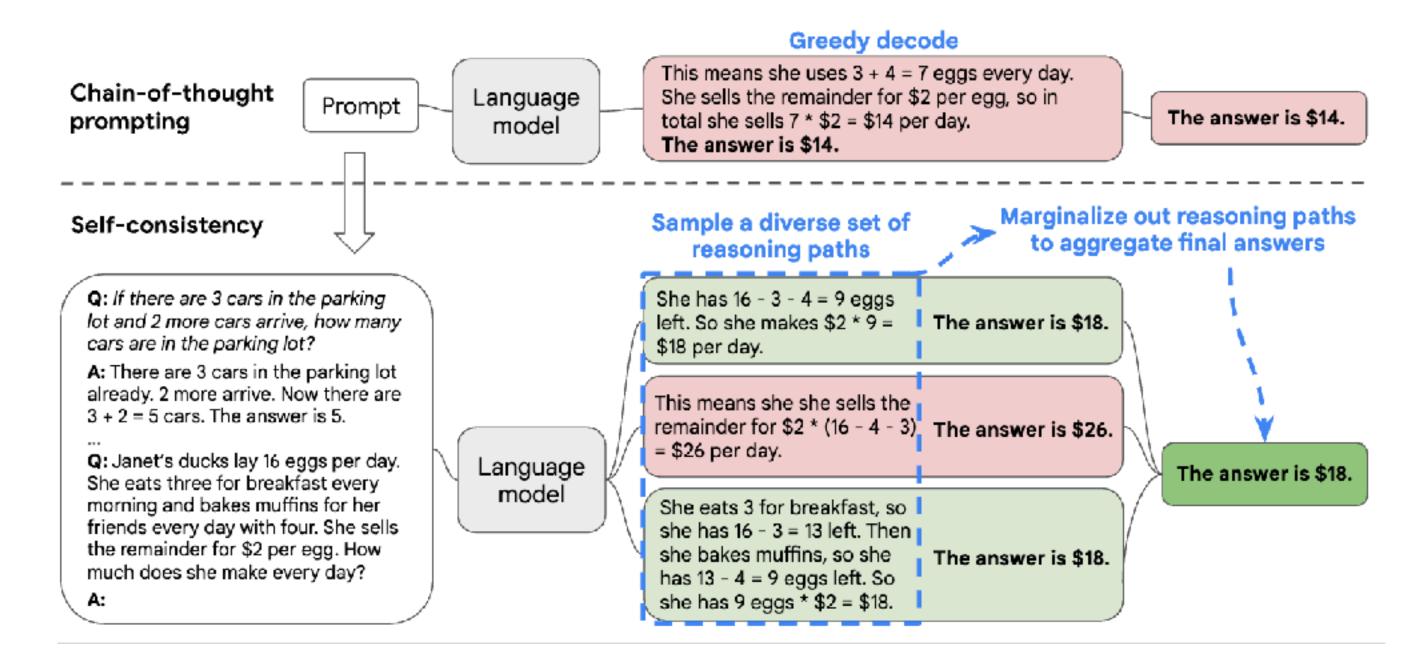
Standard Prompting Chain-of-Thought Prompting Model Input Model Input Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? tennis balls does he have now? A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to do they have? make lunch and bought 6 more, how many apples do they have? Model Output Model Output A: The cafeteria had 23 apples originally. They used A: The answer is 27. 🗙 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸



Self-Consistency

- Let the model reason multiple times
 - Pick the most frequent answer
 - Mathematically: Marginalize out reasoning to obtain most likely answer

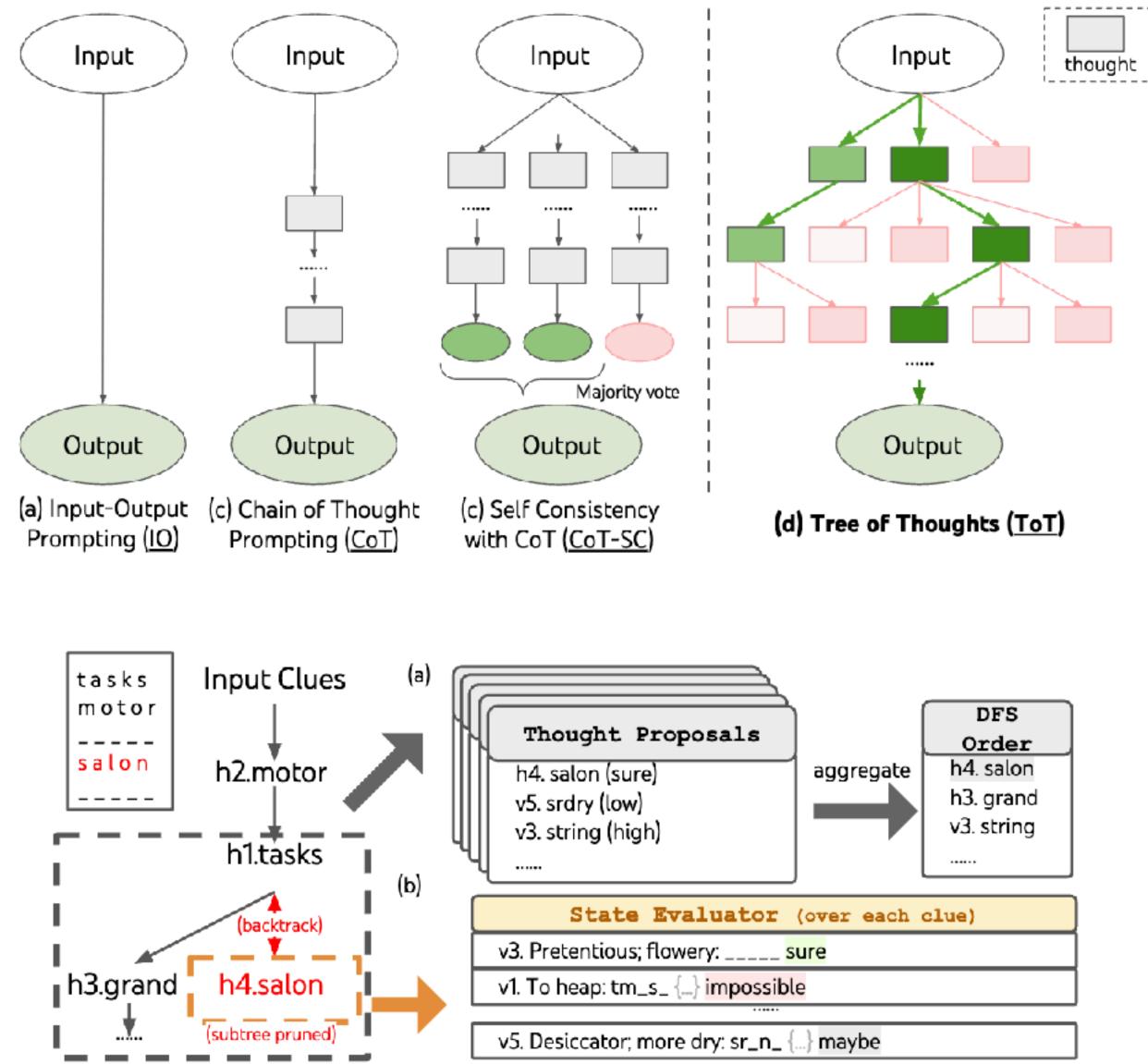
Self-Consistency Improves Chain of Thought Reasoning in Language Models, Wang etal 2022



Tree of Thoughts

- Combine tree search with CoT
 - Requires a state-evaluator (i.e. reward/cost/scoring function or second LLM)

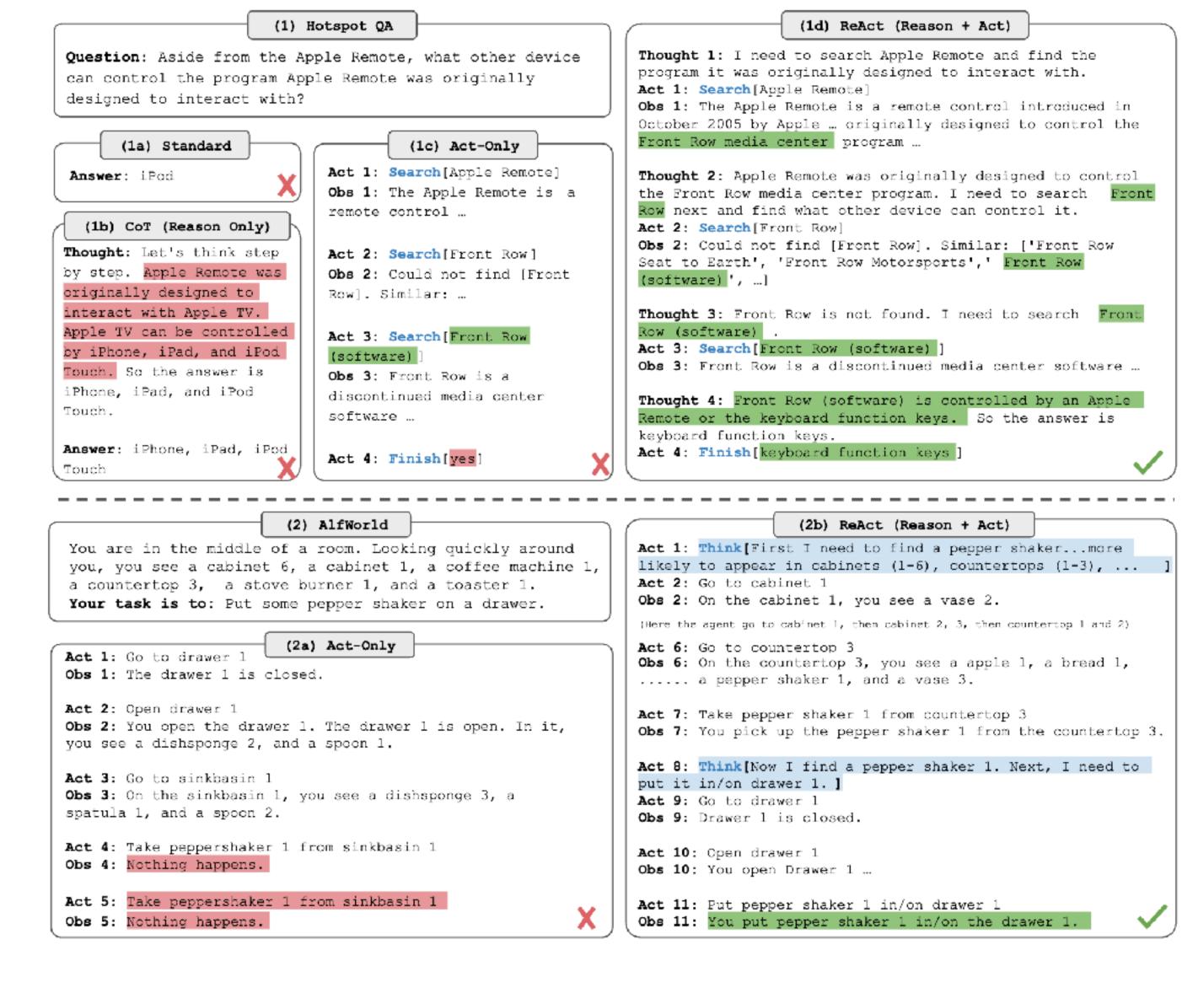
Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Yao etal 2023



ReA(

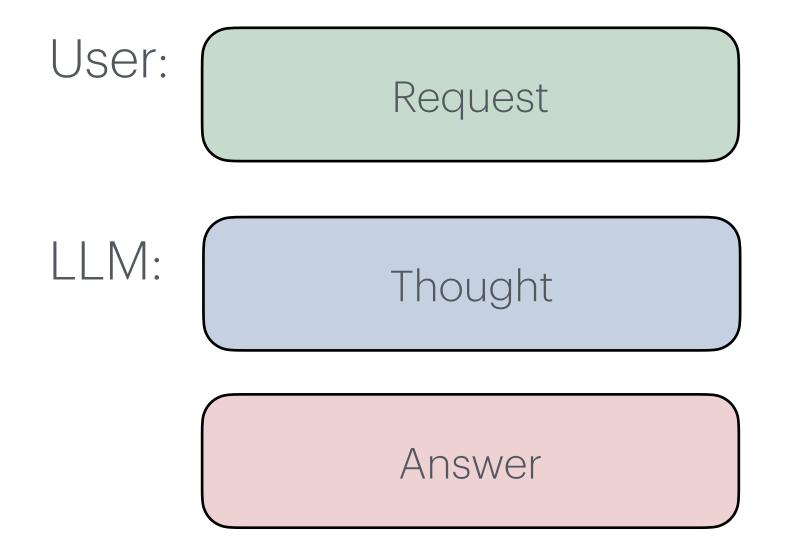
- Chain of thought for iterative actions / tool use
 - Thought
 - Action
 - Observation (from external tool)

ReAct: Synergizing Reasoning and Acting in Language Models, Yao etal 2022



Structured Dialogues

- Break down problem / tasks for LLM
 - Higher performance
 - Lots of human engineering / prompting



Reflexion

- Chain of Thought / ReACT
- Obtain observation / result
- Reflect on outcome
- Repeat

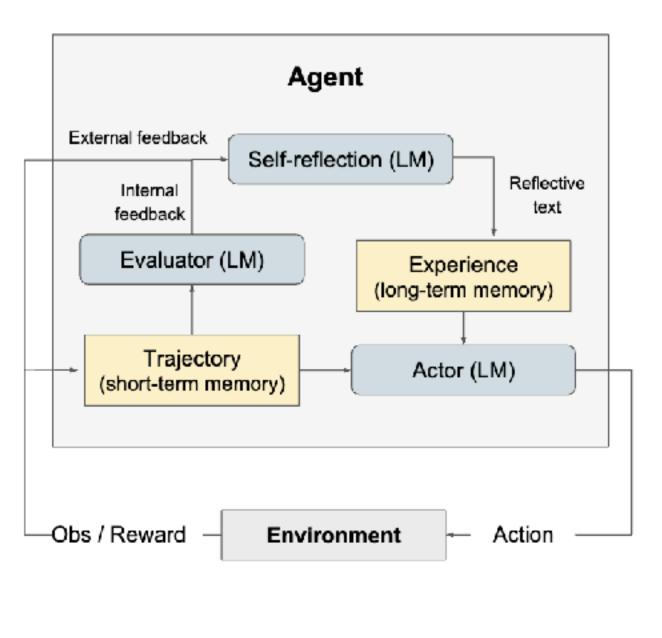
Reflexion: Language Agents with Verbal Reinforcement Learning, Shin etal 2023

,	1. Decision making	2. Programming	3. Reasoning
(a) Task	You are in the middle of a room [] Task: clean some pan and put it in countertop.	Task: You are given a list of two strings [] of open '(' or close ')' parentheses only []	Task: What profession does J Lanchester and Alan Dean Fos have in common?
(b) Trajectory ↓	[] Action:take pan1 from stoveburner1 Obs:Nothing happens. [] Action:clean pan1 with sinkbasin1 Obs:Nothing happens. []	<pre>def match_parens(lst): if s1.count('(') + s2.count('(') == s1.count(')') + s2.count(')'): [] return 'No'</pre>	Think: [] novelist, journ critic [] novelist, screenwriter [] common is novelist and screenwriter. Action: "novelist, screenwri
(c) Evaluation (internal / external)	Rule/LM Heuristic: Fallucination.	Self-generated unit tests fail: assert match_parens()	Environment Binary Reward: 0
∲ (d) Reflection	[] tried to pick up the pan in stoveburner 1 [] but the pan was not in stoveburner 1. []	[] wrong because it only checks if the total count of open and close parentheses is equal [] order of the parentheses []	[] failed because I incor assumed that they both had t same multiple professions [. accurately identifying their professions.
∳ (e) Next Trajectory	[] Action: take pan 1 from stoveburner 2 [] Obs: You put the pan 1 in countertop 1.	[] return 'Yes' if check(S1) or check(S2) else 'No'	Think: [] So the professi John Lanchester and Alan Dea Foster have in common is nov Action: "novelist"

Reflexion

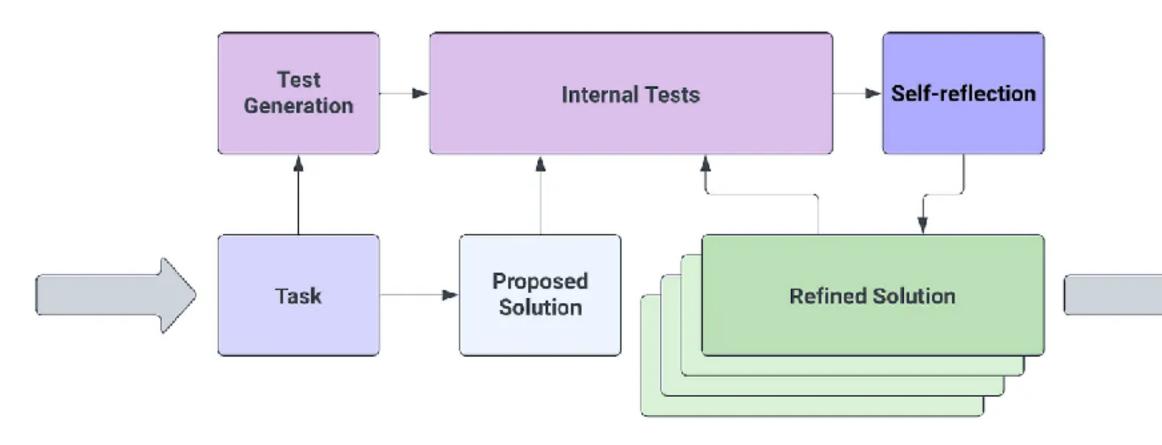
- Connections to reinforcement learning
 - More strictly planning
- Requires a evaluator (cost function)
 - External environment (i.e. simulator, code interpreter)
 - LLM generated tests
 - Trained LLM verifier [1]

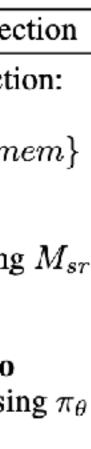
[1] Generative Verifiers: Reward Modeling as Next-Token Prediction, Zhang etal 2024



Algorithm 1 Reinforcement via self-reflection

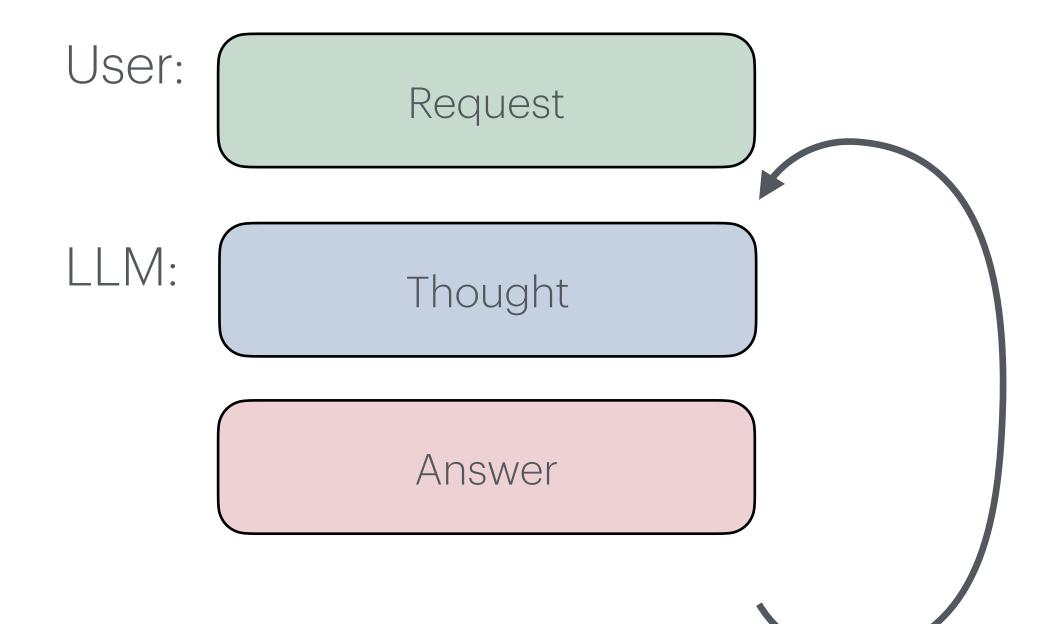
Initialize Actor, Evaluator, Self-Reflection: M_a, M_e, M_{sr} Initialize policy $\pi_{\theta}(a_i|s_i), \theta = \{M_a, mem\}$ Generate initial trajectory using π_{θ} Evaluate τ_0 using M_e Generate initial self-reflection sr_0 using M_{sr} Set $mem \leftarrow [sr_0]$ Set t = 0while M_e not pass or $t < \max$ trials do Generate $\tau_t = [a_0, o_0, \dots, a_i, o_i]$ using π_{θ} Evaluate τ_t using M_e Generate self-reflection sr_t using M_{sr} Append sr_t to mem Increment tend while return





Reflexion

- Break down problem / tasks for LLM
 - Higher performance
 - Lots of human engineering / prompting



References

- [1] Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws, Allen-Zhu 2024
- [2] Vision Transformers Need Registers, Darcet etal 2023
- [3] Massive Activations in Large Language Models, Sun etal 2024
- [4] Language Models are Few-Shot Learners, Brown etal 2020
- [5] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei etal 2022
- [6] Self-Consistency Improves Chain of Thought Reasoning in Language Models, Wang etal 2022
- [7] Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Yao etal 2023
- [8] ReAct: Synergizing Reasoning and Acting in Language Models, Yao etal 2022
- [9] Reflexion: Language Agents with Verbal Reinforcement Learning, Shin etal 2023
- [10] Generative Verifiers: Reward Modeling as Next-Token Prediction, Zhang etal 2024