Tool Use

Philipp Krahenbuhl, UT Austin

Full Picture
Basic LLILM

Pre-training *

[nstruction
tuning

>

RLHE

DPO

A demo

> ollama run llama3.1l
>>> In one word: 1s 1t morning?

What went wrong” Yes.

>>> In one word: 1s 1t night?

No.

. LLM has no information to help answer >>> In one word: 1s 1t noon?

the question Yes.

. >>> In one word: 1s 1t afternoon?

- LLM is bad at math Ves .

« similar to humans
- Any of us could write some simple ollama run llama3.l

oython code to find answer >>> What 1s 54321 + 12345

54321 + 12345 = 66/06

A demo

[.Ms that code

ollama run llama3.1

>>> In one word: 1s i1t morning? Feel free to write a python
program to answer.

kN Ok
- Ask LLM to produce python code to Here's a simple Python program that checks the current time
compute answer ?ngf/trﬁgﬁs whether it's morning (6am-11am):
import datetime
¢ Why does this work? now = datetime.datetime.now()

hour = now.hour

1f 6 <= hour < 12:
print("Morning!")
else:
print("Not Morning")

You can run this code in a Python interpreter or save 1t to a
file and run 1t as a script.

L.Ms that code

ollama run llama3.1l

>>> What 1s 54321 + 12345. Feel free to write a python
program to answer.

**Calculating the Sum of Two Numbersxx

You can use Python to calculate the sum of two numbers,

which in this case are 54321 and 12345 . Here's a simple
« Ask LLM to produce python code to brogram that does just that:

compute answer “*bython

Define varilables for the two numbers

. numl 54321
. V\/hy does this work? num2 12345

Calculate the sum
result = numl + num2

Print the result
print(f"The sum of {numl} and {num2} is: {result}")

*kQutput @k

The sum of 54321 and 12345 1s: 66666

Ful

J1cture

Basic LLM
- [nstruction
Pre-training |
tuning
Code in training Instruction tuning
data data for coding

RLHE

DPO

(Optional)
oreference coding

data

[.Ms that code

ollama run llama3.1

>>> In one word: 1s i1t morning? Feel free to write a python
program to answer.

kN Ok
- Ask LLM to produce python code to Here's a simple Python program that checks the current time
and prints whether it's morning (6am-11am):
compute answer N ovthon
import datetime
- Model might not know how to use now = datetime.datetime.now()
answer hour = now.hour

1f 6 <= hour < 12:

rint("Morning!")
- Not very secure ; ’

else:
print("Not Morning")
. All of python might be too broaad You can run this code in a Python interpreter or save it to a

file and run 1t as a script.

Fine-tune LLM with coding chat template

[.Ms that code

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>

Environment: ipython<|eot_id|>
<|start_header_id|>user<|end_header_id|>
» Ask LLM to produce python code to
Write code to check if number 1is prime, use that to
compute answer see if the number 7 is prime<]|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

« Model might not know how to use <|python_tag|>def is_prime(n):

if n <= 1:
answer return False
for 1 in range(2, int(nxx0.5) + 1):
if n % i == 0:
- Not very secure return False
return True
» All of python might be too broad orint(is_prime(7)) # Output: True<|eom_id|>

<|start_header_id|>ipython<|end_header_id|>
True<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

L.Ms that code

« Ask LLM to produce python code to
compute answer

- Model might not know how to use
answer

e Not very secure

. All of python might be too broaad

d

LLM Server

Fine-tune LLM with coding chat template

Making arbitra

MOSt IMPOSS

«—>

'y python code execution save is

ible.

[.Ms that code

« Ask LLM to produce python code to
compute answer

- Model might not know how to use
answer

- Not very secure

e All of python might be too broad

Built—in Functions

abs()
aiter()
all()
anext()
any ()
ascii()
bin()

bool
breakpoint()
callable()
chr()
classmethod()
compile()
comp lex
delattr()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float
format()
getattr()
globals()
hasattr()
hash()
help()
hex()

id()
input()
int
isinstance()
issubclass()
iter()
len()
locals()
map ()

max ()
min()
next()
object
oct()
open()
ord()
pow ()
print()
property
repr()
reversed()
round ()
setattr()
slice
sorted()

staticmethod()

sum()

super

type

vars()

zip()
__import__()

Built-in Constants

False
True
None

NotImplemented

Ellipsis
__debug__

Fine-tune LLM with coding chat template

string — Common string operations

re — Regular expression operations

difflib — Helpers for computing deltas

textwrap — Text wrapping and filling

unicodedata — Unicode Database

stringprep — Internet String Preparation

readline — GNU readline interface

rlcompleter — Completion function for GNU readline
Binary Data Services

struct — Interpret bytes as packed binary data

codecs — Codec registry and base classes

Data Types

datetime — Basic date and time types

zoneinfo — IANA time zone support

calendar — General calendar-related functions
collections — Container datatypes

collections.abc — Abstract Base Classes for Containers
heapqg — Heap queue algorithm

bisect — Array bisection algorithm

array — Efficient arrays of numeric values

weakref — Weak references

types — Dynamic type creation and names for built-in types
copy — Shallow and deep copy operations

pprint — Data pretty printer

reprlib — Alternate repr() implementation

enum — Support for enumerations

graphlib — Functionality to operate with graph-like structures
Numeric and Mathematical Modules

numbers — Numeric abstract base classes

math — Mathematical functions

cmath — Mathematical functions for complex numbers
decimal — Decimal fixed-point and floating-point arithmetic
fractions — Rational numbers

random — Generate pseudo-random numbers

statistics — Mathematical statistics functions
Functional Programming Modules

itertools — Functions creating iterators for efficient looping
functools — Higher-order functions and operations on callable objects
operator — Standard operators as functions

File and Directory Access

pathlib — Object-oriented filesystem paths

os.path — Common pathname manipulations

fileinput — Iterate over lines from multiple input streams
stat — Interpreting stat() results

filecmp — File and Directory Comparisons

tempfile — Generate temporary files and directories
glob — Unix style pathname pattern expansion

fnmatch — Unix filename pattern matching

linecache — Random access to text lines

shutil — High-level file operations

Data Persistence

pickle — Python object serialization

copyreg — Register pickle support functions

shelve — Python object persistence

marshal — Internal Python object serialization

dbm — Interfaces to Unix “databases”

sqlite3 — DB-API 2.0 interface for SQLite databases
Data Compression and Archiving

zlib — Compression compatible with gzip

gzip — Support for gzip files

bz2 — Support for bzip2 compression

lzma — Compression using the LZMA algorithm

zipfile — Work with ZIP archives

tarfile — Read and write tar archive files

File Formats

csv — CSV File Reading and Writing

configparser — Configuration file parser

tomllib — Parse TOML files

netrc — netrc file processing

plistlib — Generate and parse Apple .plist files
Cryptographic Services

hashlib — Secure hashes and message digests

hmac — Keyed-Hashing for Message Authentication
secrets — Generate secure random numbers for managing secrets
Generic Operating System Services

0s — Miscellaneous operating system interfaces

io — Core tools for working with streams

time — Time access and conversions

argparse — Parser for command-line options, arguments and subcommands
logging — Logging facility for Python

logging.config — Logging configuration
logging.handlers — Logging handlers

getpass — Portable password input

curses — Terminal handling for character-cell displays
curses.textpad — Text input widget for curses programs
curses.ascii — Utilities for ASCII characters
curses.panel — A panel stack extension for curses
platform — Access to underlying platform’s identifying data
errno — Standard errno system symbols

ctypes — A foreign function library for Python
Concurrent Execution

threading — Thread-based parallelism

multiprocessing — Process—based parallelism
multiprocessing.shared_memory — Shared memory for direct access acros
The concurrent package

concurrent.futures — Launching parallel tasks
subprocess — Subprocess management

sched — Event scheduler

queue — A synchronized queue class

contextvars — Context Variables

_thread — Low-level threading API

Networking and Interprocess Communication

asyncio — Asynchronous I/0

socket — Low-level networking interface

ssl — TLS/SSL wrapper for socket objects

select — Waiting for I/0 completion

selectors — High-level I/0 multiplexing

signal — Set handlers for asynchronous events

mmap — Memory-mapped file support

Internet Data Handling

email — An email and MIME handling package

json — JSON encoder and decoder

mailbox — Manipulate mailboxes in various formats
mimetypes — Map filenames to MIME types

base64 — Basel6, Base32, Base64, Base85 Data Encodings
binascii — Convert between binary and ASCII

quopri — Encode and decode MIME quoted-printable data
Structured Markup Processing Tools

html — HyperText Markup Language support

html.parser — Simple HTML and XHTML parser
html.entities — Definitions of HTML general entities
XML Processing Modules

xml.etree.ElementTree — The ElementTree XML API
xml.dom — The Document Object Model API
xml.dom.minidom — Minimal DOM implementation
xml.dom.pulldom — Support for building partial DOM trees
xml.sax — Support for SAX2 parsers

xml.sax.handler — Base classes for SAX handlers
xml.sax.saxutils — SAX Utilities

xml.sax.xmlreader — Interface for XML parsers
xml.parsers.expat — Fast XML parsing using Expat
Internet Protocols and Support

webbrowser — Convenient web-browser controller
wsgiref — WSGI Utilities and Reference Implementation
urllib — URL handling modules

urllib.request — Extensible library for opening URLs
urllib.response — Response classes used by urllib
urllib.parse — Parse URLs into components
urllib.error — Exception classes raised by urllib.request
urllib. robotparser — Parser for robots.txt

http — HTTP modules

http.client — HTTP protocol client

ftplib — FTP protocol client

poplib — POP3 protocol client

imaplib — IMAP4 protocol client

smtplib — SMTP protocol client

uuid — UUID objects according to RFC 4122
socketserver — A framework for network servers
http.server — HTTP servers

http.cookies — HTTP state management

http.cookiejar — Cookie handling for HTTP clients
xmlrpc — XMLRPC server and client modules
xmlrpc.client — XML-RPC client access

xmlrpc.server — Basic XML-RPC servers

ipaddress — IPv4/IPv6 manipulation library

Multimedia Services

wave — Read and write WAV files

colorsys — Conversions between color systems
Internationalization

gettext — Multilingual internationalization services
locale — Internationalization services

Program Frameworks

turtle — Turtle graphics

cmd — Support for line-oriented command interpreters
shlex — Simple lexical analysis

[.Ms with tool calls

%

I

Output: Text / function calls

« Give LLM access to limited set of tools
LLM

 [nput: Text prompt
INnput: Text Prompt

- Qutput: Text or function call

%

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

[.Ms with tool calls

- What tools should we use?

- Toolformer: calculator, QA-model
translation, wiki search, date-function

. General: User defined tools in context
/ system prompt

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society| the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from “la tortuga’, the Spanish word for
IMT(“tortuga”) — turtle] turtle.

The Brown Act is California’s law |WikiSearch(“Brown
Act”) — The Ralph M. Brown Act is an act of the
California State Legislature that guarantees the public's
right to attend and participate in meetings of local
legislative bodies.| that requires legislative bodies, like
city councils, to hold their meetings open to the public.

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

[.Ms with tool calls

%

I

Output: Text / function calls

. How does inference work?
LLM

- Without tools: Qutputs become new

nputs INnput: Text Prompt

%

. With tools?

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

[.I.Ms with tool calls

Output: Text / function calls

I

. How does inference work?

LLM

- Without tools: Qutputs become new
inputs Input: Text Prompt / tool call + result

|63

- With tools:

%

- Tool call, evaluate, append to input

- Input and output not the same

| .“ .\/S Wlth tOOl Caﬂs Supervision:- -

A A
Output: E E
LLM
- Without tools
A A
« Qutputs = inputs shifted by 1 nput: E E

« With tools

- How does training work?

%

- Qutputs = inputs shifted by 1

« No loss on tool result

| .“ .\/S Wlth tOOl Caﬂs Supervision:- -

A A
- [BER
LM
- Option A: Lots of hand-designed datao . .
INnput: I
- Option B: We use a LLM to create

training data (Toolformer)

- Where do we get training data from?

%

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

1 2
LMDataset = o, 1vle API Calls Execute AP Calls

., =Pittsburgh is c.! = What other name is r! = Steel City

L
O O B O -r :r 1 also known as Pittsburgh known by?
X;., = the Steel City ¢4 = Which country is r = United States

Pittsburgh in?

« Basic syntax

- New tag: <API>FN(Q)-R</API>

- Model learns to produce
<API>FN(Q)</API>

- Model learns to parse
<API>FN(Q)-R</API>

. Task: Convert
| M Dataset » LM Dataset with <API>..</API>

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

3
Filter API Calls

L{c! — Steel City)
<min(L(c,! — €), L(e))

L{c — United States)
>min(L{c;* — &), L(€))

LM Dataset
with APl Calls

X" = Pittsburgh is
also known as
[QA(What ...?
— Steel City)]
the Steel City.

1 2 3 LM Dataset

Ly DEES Sample API Calls Execute API Calls Filter API Calls " with API Calls
i n I - . -
— r T] X, , = Pittsburgh is c.! = What other name is r! = Steel City L(c! — Steel City) X" = Pittsburgh is
O O O -r e :r ' also known as Pittsburgh known by? < min(L (¢! — €), L () also known as
I [QA(What ...?
X;., = the Steel Cily ¢4 = Which country is r# = United States L(c”— United States) — Steel City)]
Pittsburgh in? >min(L{c;* — €), L)) the Steel City.

Dataset item: The president of the United States is Joe Biden.

« LM Dataset » LM Dataset with <API>..</API>

- Step 1: Load a dataset

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

1

2 3 LM Dataset

Ly DEES Sample API Calls Execute API Calls Filter API Calls " with API Calls
i n I - . -
— r T] X, , = Pittsburgh is c.! = What other name is r! = Steel City L(c! — Steel City) X" = Pittsburgh is
O O O -r e :r ' also known as Pittsburgh known by? < min(L (¢! — €), L () also known as
I [QA(What ...?
X;., = the Steel Cily ¢4 = Which country is r# = United States L(c”— United States) — Steel City)]
Pittsburgh in? >min(L{c;* — €), L)) the Steel City.

« LM Dataset » LM Dataset with <API>..</API>

- Step 1: Load a dataset

- Step 2: Use in-context learning to teach LLM to
use AP]

Your task is to add calls to a Question Answering API to @
piece of text. The questions should help you get
information required to complete the text. You can call the
APl by writing "[QA(gquestion)]" where "question" is the
guestion you want to ask.

Here are some examples of API calls:

Input: Coca-Cola, or Coke, is a carbonated soft drink
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-
Cola known by?")] Coke, is a carbonated soft drink
manufactured by [QA("Who manufactures Coca-Cola?")]
the Coca-Cola Company.

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

100

HOormer

X

1

2 3 LM Dataset

LS Sample API Calls Execute API Calls Filter API Calls T with API Calls
i = Pittsburghis c.! = What other name is r! = Steel City L(c! — Steel City) X" = Pittsburgh is
also known as Pittsburgh known by? < min(L (¢! — €), L(€)) also knawn as
. . [QA(What ...?
X, = the Steel City ¢ = Which country is r# = United States L (c? — United States) — Steel City)]
Pittsburgh in? > min(L(c;> — &), L(€)) the Steel City.

« LM Dataset » LM Dataset with <API>..</API>

- Step 1: Load a dataset

- Step 2: Use in-context learning to teach LLM to

use AP]

.« Step 3: Construct N prompts, stop at word i anad

open <API> (for alli), le

CLLM complete

Your task is to add calls to a Question Answering API to @
piece of text. The questions should help you get
information required to complete the text. You can call the
APl by writing "[QA(gquestion)]" where "question" is the
guestion you want to ask.

Here are some examples of API calls:

Input: Coca-Cola, or Coke, is a carbonated soft drink
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-
Cola known by?")] Coke, is a carbonated soft drink
manufactured by [QA("Who manufactures Coca-Cola?")]
the Coca-Cola Company.

Input: The president of the United States is Joe Biden.

Output: The president of the |

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

1 2 3 LM Dataset

Ly DEES Sample API Calls Execute API Calls Filter API Calls " with API Calls
i n I - - -

— X, , = Pittsburgh is c.! = What other name is r! = Steel City L(c! — Steel City) X" = Pittsburgh is
-r :r "~ also known as Pittsburgh known by? <min(L (¢! — €), L(€)) also known as

I [QA(What ...?

X;., = the Steel Cily ¢4 = Which country is r# = United States L(c”— United States) — Steel City)]

Pittsburgh in? >min(L(c* —), L (€)) the Steel City.

L(e)

Output: The president of the United States is Joe Biden

« LM Dataset » LM Dataset with <API>..</API>

. Step 1: Load a dataset L(0Q, ¢)
Output: The president of the United States is [Who is the
. Step 2: Use in-context learning to teach LLM to president of the United States] Joe Biden
use API
- Step 3: Construct N prompts, stop at word i and L(Q, a)

Output: The president of the United States is [Who is the
oresident of the United States— Joe Biden] Joe Biden

open <API> (for all i), let LLM complete

. Step 4: Keep useful examples
L(Q, a) + T < min(L(¢), L(Q))

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

LM Dataset

1

c;' = What other name is

~ " Sample API Calls

X, , = Pittsburgh is
also known as Pittsburgh known by?

X,., = the Steel City c.2 = Which country is
Pittsburgh in?

- Use LM Dataset with APl calls to .
finetune model e

20

15

10

LAMA

== Toolformer
-e- Toolformer (disabled)
===+ GPT3

0 2000 4000 6000

Model Parameters (M)

30

25

20

15

10

2 3
Execute AP| Calls Filter API Calls

LM Dataset
with API Calls

r! = Steel City L(c! — Steel City) X" = Pittsburgh is
<min(L (¢! — €), L,(e)) also known as
[QA(What ...?
r# = United States L!.(ci’- — United States) — Steel City)]
>min(L(c* — ¢), L(e)) the Steel City.
Math Benchmarks QA Benchmarks
A0 s eeeeeeeesssresaen
35
30
25
20
15
10
5
0
2000 4000 6000 0 2000 4000 6000
Model Parameters (M) Mode! Parameters (M)

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

| .“ .\/S Wlth tOOl Caﬂs Supervision:- -

A A
- [BER
LM
- Option A: Lots of hand-designed datao . .
INnput: I
- Option B: We use a LLM to create

training data (Toolformer)

- Tool datasets

%

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

/ero-snottooluse veormm =

A A
Output:
LM
- Always show in-context examples
Y P A A A
| - Input:
. Structured / json description

. Fine-tune mode|

. Train with many more tools

%

The Llama 3 Herd of Models, Dubey etal 2024

Q, Query =>(AnyTool

} ()
*II/_“F_%EE@ @

11

ANy 100!

‘-------

.................... API-Retriever
API Pool (16K+ APIs) \l

L Solver Y

/u@

Task: Tool retrieval (Self-Reflection |<—= &3 Solution
. Category Agent fg Query :> r API Retriever ‘ qulﬁt-l-oﬁ-l:l-{t- --
¢ EX pO ﬂ d p ‘ O ﬂ n er tO 1 6 ‘<+ A P | S ' ' 1 ‘ { create agent category level(category name)]
: Tool Agent e Age E get tools in category(category name) i<3
s i get tool descriptions([tool list])]
‘ |]c .l finish_search() Ve
4 levels of agents Q Rapid A e agont ool el (ool o))
> I . I
5 | i get tools 1n category(category name) N
o ., |] | <z
§ Finee Sports : get tool descriptions([tool list])

: finish_search() ! ®

- Meta-Agent T T T N | e

t add_API into_API_pool([API_name_list]) :
E 888 % 8 . E‘ —> [%’ 888] [)QJ i::_iiﬁdleia?s(zi?f_l n:;r:)e) <t\
+ Category-Agent i cRad Ry o
. Tool-Agent : ;Tl = A = (Ol O e e
API-Candidate Pool
Structure of 16K+ APIs |::> Solved C—> Solution or Unsolved I:>[Self-Re;'lection]

« LM solver

AnyTool: Selt-Reflective, Hierarchical Agents for Large-Scale API Calls, 2024

11

ANy 10Ol

« First 3 levels build candidate tool set

- Meta-Agent
- Category-Agent
- Tool-Agent

- Called recursively until too

defined (each search termi

finish_..)

SE
Nao

T 1S

tes with

a a

Type

Function Name

Functionality

Input

Output

create_agent_category_level

get_tools_in_category

Create a category agent.
Get tool names under a category.

Category name
Category name

Category agent
[Tool names]

Meta Agent get_tool_descriptions Get description of each tool. [Tools] [Tool descriptions]
finish_search Send out finish signal. None None
create_agent_tool_level Create a tool agent. [Tools] Tool agent

Category Agent get_tools_in_category Get tool names under a category. Category name [Tool names]
get_tool_descriptions Get description of each tool. [Tools] [Tool descriptions]
finish_search Send out finish signal. None None
add_API_into_API_pool Add APIs into candidate pool. [APIs] None
get_ APIs_in_tool Get API names under a tool. Tool name [API names]
get API_detail Get detail™ of each API. [API names] [API details]

Tool Agent Check whether the query is solv-
check_if_request_solvable able using the current candidate ~ None True\False

pool.
finish_search Send out finish signal. None None

AnyTool: Selt-Reflective, Hierarchical Agents for Large-Scale API Calls, 2024

:{ create_agent tool level ([tool list])

: Category Agent rQ\ Query — > [API Retriever] 'Eq?-c-t-l-oﬁ-L-l-{t- --

(A } create_agent category level(category name)]

: Tool Agent S get tools in_category(category name)]

- Meta-Agent VT I o .<3
FT1 [£ ., 1 get_tool_descriptions([tool_list]) -
‘ | O O ‘ { finish_search() ®
— 1 QRapid /N e
A

. E get tools 1n_category(category name) §<:\
i get tool descriptions([tool list]) i

2
= Finance Sports . :
~ ! finish_search()] ®

Wz . AP domin(APL Ty I
. Tool-1 TO(.)I'Z Tool-3 i check if request solvable() E
- Final agent (LLM solver) R fnishsearch) Mo
5 lm m m —> [@‘—»888—>Ap1_2;(»‘—>%—>API-1 ‘»‘_').._'API'D]
» Solves task using toolset T AP oo !
g Structure of 16K+ APIs |:> Solved:> Solution or Unsolved ——>{ Self-Reflection |
.« Self-Reflection (Reflextion) to correct
oOULOUL AnyTool
Turn Single
- All models are prompted GPT-4 variants Step Multi
Learned No
Objective Goal State
Toolset Open
Feedback Yes

AnyTool: Selt-Reflective, Hierarchical Agents for Large-Scale API Calls, 2024

| ! 'MS Wlth tOOS Supervision:- -

A A
S =
LM
- Special tags . . .
INnput:
- Special chat-template

. Allow LLM to output tool calls

%

References

. [1] Toolformer: Language Models Can Teach Themselves to Use Tools, Schick etal 2023

- [2] The Llama 3 Herd of Models, Dubey etal 2024

. [3] AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls, 2024

