Welcome to Neural Networks

What are Neural Networks?

A old name for "Deep Learning"

What is Deep Learning?

Machine Learning that works

Phone and laptop policy

Phones stay in your pocket

- Leave the room to use them
- They are a distraction for everyone

Laptops in the last row only

- They are a distraction for people behind you
- Flat tablets for notes are fine

Neural Networks class

- Webpage: https://ut.philkr.net/cs342/
- Friday: 1-4pm / GDC 2.216
 - With two 10min breaks
- Instructor: Philipp Krähenbühl (OH Friday 16:00 16:30 GDC 4.816)
- TAs: Haran Raajesh, Li-Yuan Tsao

Prerequisites

- Python
- Laptop with VSCode
- (Linear Algebra)
- (Basic ML background)

Your grade

- 6 x Homework (1/6 of grade each)
- Due midnight anywhere on earth (07:00 central time next day)
 - 1 day late: -10%
 - 2 days late: -30%
 - 3 days late: -100%
 - Solution will be released day 3. No exceptions. Plan accordingly.

Slip days

- Everybody gets 3 slip days. You may use them to waive
 - 1 day late penalty (cost: 1 slip day)
 - 2 day late penalty (cost: 2 slip day)
 - convert 2 into 1 day late (cost: 1 slip day)
 - we cannot waive a 3 day late penalty.
- Slip days are applied automatically and greedily. For example: if you're one day late on every homework. Late penalties on the first 3 homeworks are waived irrespective of your score.

Homeworks

- Coding
- Auto-graded (through canvas)
 - 5 submissions (most recent submission counts)

GenAI tools

- Use them (you'll use them in your job later too)
- Two rules:
 - Mark code written by GenAl: # This code was written by XXXX where XXXX is the name of the model you used.
 - Failure to do so might lead to plagiarism issues.
 - This has to be done per-function (ask the GenAl tool to do it)
 - You need to be able to explain every piece of code you submit.

Use GenAI tools responsibly

- Use GenAl tools to help you grow and learn something
 - Ask Questions
 - Ask it to explain code it writes
 - Use GenAl as a source of motivation
 - Use homeworks to familiarize yourself with GenAl tools

Use GenAI tools responsibly

- Things NOT to do
 - Hey Claude, do my homework

Accommodations

- Urgent matters: Dr's note, waiving late days
- D&A
 - Classroom: Let me know during the break
 - No in-class, or scheduled exams
 - Slides online before class, I'll try to record lectures, no attendance requirements
 - Homework: published in advance (we aim for 2-3 weeks)
 - If more time is required, we will work with individual to give them access earlier

Modern GPU architectures

GPUs

- Massively parallel processors
- H100 SXM5
 - 132 Streaming Multiprocessors (SM) per GPU
 - 128 FP32 cores per SM
 - 80GB HBM3 ram
 - 228 KB shared memory / SM

GH100 Full GPU with 144 SMs [1]

GPUs - SIM

- Streaming Multiprocessors (SM)
 - Individual "CPUs" on chip
 - 4 warps (similar to CPU cores)
- Each warp
 - Tensor Core (matrix multiplier)
 - 32 threads (shared scheduler, dispatcher)

GH100 Streaming Multiprocessor (SM) [1]

GPUs in a node

- Compute node
 - 8-16 GPUs per server / node
- Fast / specialized communication between GPUs (NVlink)

Node

GPUs in a datacenter

- Nodes networks in a datacenter
- Up to 40k nodes with 16 GPUs each
 - 0.42 GigaWatt
 - 40% of nuclear power plant, excluding cooling, other hardware
- We have peaked

- Massively parallel processors
 - Intuitions from CPUs and theoretical
 CS are often wrong
 - Nearly endless compute
 - On a restricted set of operations
 - Limited memory and memory bandwidth

GH100 Full GPU with 144 SMs [1]

A simple example

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows

•
$$e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$$

What deep learning operation is this?

|--|

A simple example

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows
 - $e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$
- What deep learning operation is this?

```
X1 X2 X3 X4 X5 X6
```

```
def maxpool_1d_brute(x: torch.Tensor, window_size: int):
    """A windowed maximum pooling operation for 1D

tensors."""
    output = x.new_zeros(x.size(0) - window_size + 1)
    for i in range(output.size(0)):
        for j in range(window_size):
            output[i] = max(output[i], x[i + j])
    return output
```

A simple example

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows
 - $e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$
- What deep learning operation is this?

A simple example in CUDA

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows

•
$$e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$$

What deep learning operation is this?

X 1	X 2	X 3	X 4	X 5	X 6

Compute: $O(|\mathbf{x}| W)$

Memory access: $O(|\mathbf{x}||W)$

A simple example in CUDA

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows

•
$$e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$$

What deep learning operation is this?

X1 X2 X3	X 4	X 5	X 6
----------	------------	------------	------------

Compute: $O(|\mathbf{x}| W/G)$

Memory access: $O(|\mathbf{x}| W/G)$

A simple example in CUDA

- You are given a series of numbers ${\bf x}$ and a **fixed** window size W
- Find the maximum number value for all possible windows

•
$$e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$$

What deep learning operation is this?

X1 X2 X3	X 4	X 5	X 6
----------	------------	------------	------------

Compute: $O(|\mathbf{x}|W)$ Memory access: $O\left(|\mathbf{x}|\frac{W}{S}\right)$

S: shared memory size

What have we learned?

- Memory access matters
 - Reads from global memory are expensive
 - Computation is cheap

X1 X2 X3 X4 X5 X6

GPUs - Memory Bandwidth

- Node to node communication
 - RDMA/IB: 50GB / s
- GPU to GPU communication (within node)
 - NVLink: 900 GB / s
- GPU memory bandwidth
 - HBM3->shared mem: 3.35 TB / s
- Peak flops: 130-1000 teraFLOPS @ BF16

Modern GPU architectures

- Near infinite compute
- Memory bandwidth and size limits
 - Order of magnitude slower
 GPU -> Node -> Datacenter
- Approaching limits of power consumption, and physical limits in manufacture

GH100 Full GPU with 144 SMs [1]

References

- [1] NVIDIA. NVIDIA H100 Tensor Core GPU Architecture. 2022. (link)
- [2] Meta. Building Meta's GenAl Infrastructure. 2024 (link)

Tensors

What is a Tensor?

- An array of numbers (of the same type)
- Examples:
 - 1D tensor: Vector, Waveform
 - 2D tensor: Matrix
 - 3D tensor: Image
 - 4D tensor: Video

Tensors in PyTorch

Notebook

The secret solution

•
$$e_i = \max(x_i, x_{i+1}, ..., x_{i+W-1})$$

- $e_i = \max \left(\max(x_i, ..., x_K), \max(x_{K+1}, ..., x_{i+W-1}) \right)$
- $e_{i+1} = \max \left(\max(x_{i+1}, ..., x_K), \max(x_{K+1}, ..., x_{i+W}) \right)$

X 1	X 2	X 3	X 4	X 5	X 6

Compute: $O(|\mathbf{x}|)$

Memory access: $O(|\mathbf{x}|)$