Transformers

Homework discussion

Recap: Scaling Deep

- Vanishing gradients and activations are normal
 - Better than explosions
- Residual connections and normalization deal with vanishing gradients

Scaling wide

- Why should we scale wide?
 - (Discussion)

Scaling wide

- Why should we scale wide?
 - Larger inputs
 - Larger immediate representations
 - Larger outputs
 - Better performing model

Scaling wide in PyTorch

Scaling wide

- Why should we scale wide?
 - Larger inputs
 - Larger immediate representations
 - Larger outputs
 - Better performing model

A New Problem

- Sentiment Analysis for Movie Reviews
 - Predict if review is positive or negative
 - Wy kid likes this movie
 - My little kid likes this animated movie
 - Wy kid does not like this movie
- Real-world examples: reviews on IMDB [1]

How are language tasks different?

- Images
 - Fixed input (resolution)
 - Fixed structure
- Language
 - Variable length
 - Diverse structure (tree syntax) [1]

Scaling wide

- Why should we scale wide?
 - Larger inputs
 - Larger immediate representations
 - Larger outputs
 - Better performing model
 - Variable size inputs and outputs

Scaling wide: A Simple Solution

Scaling wide

A Simple Solution

- Split input into k parts
- Run a identical smaller networks on each part

Scaling wide

A Simple Solution

- Advantages (splitting in k parts)
 - k^2 times fewer parameters
 - k times faster
 - Good at processing local information
- Disadvantage
 - Different parts do not communicate

• A **set operator** that learns to reason about the structure of a set of elements

• Inputs:

- query $\mathbf{q} \in \mathbb{R}^C$
- a set of keys $\mathbf{K} = \begin{bmatrix} \mathbf{k}_1, \cdots, \mathbf{k}_N \end{bmatrix}, \mathbf{k}_i \in \mathbb{R}^C$
- a set of values $\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_N], \mathbf{v}_i \in \mathbb{R}^C$
- Output: $o \in \mathbb{R}^C$

$$\mathbf{o} = \sum_{i} \alpha_{i} \mathbf{v}_{i}, \quad \text{where } \alpha_{i} = \frac{e^{\frac{\mathbf{q}^{\mathsf{T}} \mathbf{k}_{i}}{\sqrt{C}}}}{\sum_{j} e^{\frac{\mathbf{q}^{\mathsf{T}} \mathbf{k}_{j}}{\sqrt{C}}}}$$

Attention: Matrix Form

• Inputs:

- queries $\mathbf{Q} \in \mathbb{R}^{M \times C}$
- keys $\mathbf{K} \in \mathbb{R}^{N \times C}$
- values $\mathbf{V} \in \mathbb{R}^{N \times C}$
- Output: $O \in \mathbb{R}^{M \times C}$

.
$$\mathbf{O} = \operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{C}}\right)\mathbf{V}$$

• softmax(·) is row-wise (each row sums to 1)

- A **set operator** that learns to reason about the structure of a set of elements
- Set 1
 - keys $\mathbf{K} \in \mathbb{R}^{N \times C}$
 - values $\mathbf{V} \in \mathbb{R}^{N \times C}$
- Set 2
 - queries $\mathbf{Q} \in \mathbb{R}^{M \times C}$
 - outputs $\mathbf{O} \in \mathbb{R}^{M \times C}$

Self-Attention and Cross-Attention

- Self-Attention
 - queries, keys & values from the same inputs
- Cross-Attention
 - keys and values come from one set
 of inputs
 - queries come from **another set** of inputs

Self-Attention

Attention:

•
$$\mathbf{O} = \operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{C}}\right)\mathbf{V}$$

• Self-Attention: $O \in \mathbb{R}^{M \times C}$

•
$$\mathbf{O} = \operatorname{Attention}(\mathbf{X}, \mathbf{X}, \mathbf{X}) = \operatorname{softmax}\left(\frac{\mathbf{X}\mathbf{X}^{\top}}{\sqrt{C}}\right)\mathbf{X}$$

Issues With Self-Attention

•
$$\mathbf{O} = \operatorname{Attention}(\mathbf{X}, \mathbf{X}, \mathbf{X}) = \operatorname{softmax}\left(\frac{\mathbf{X}\mathbf{X}^{\top}}{\sqrt{C}}\right)\mathbf{X}$$

• For any $(\mathbf{x}_i, \mathbf{x}_j)$ pair where $i \neq j$,

$$\begin{aligned} \mathbf{x}_i \mathbf{x}_j^\top &\leq \frac{1}{2} (\mathbf{x}_i \mathbf{x}_i^\top + \mathbf{x}_j \mathbf{x}_j^\top) \\ &\leq \max(\mathbf{x}_i \mathbf{x}_i^\top, \mathbf{x}_j \mathbf{x}_j^\top) \\ \alpha_{i,j} &\leq \max(\alpha_{i,i}, \alpha_{j,j}) \quad \text{(softmax preserves order)} \\ \text{for } \pmb{\alpha} &= \operatorname{softmax} \left(\frac{\mathbf{X} \mathbf{X}^\top}{\sqrt{C}} \right) \end{aligned}$$

Issues With Self-Attention

$$\mathbf{O} = \operatorname{Attention}(\mathbf{X}, \mathbf{X}, \mathbf{X}) = \operatorname{softmax}\left(\frac{\mathbf{X}\mathbf{X}^{\top}}{\sqrt{C}}\right)\mathbf{X}$$

$$\alpha_{i,j} \leq \max(\alpha_{i,i}, \alpha_{j,j}) \text{ for }$$

$$\alpha = \operatorname{softmax} \left(\frac{\mathbf{X} \mathbf{X}^{\mathsf{T}}}{\sqrt{C}} \right)$$

- diagonal always be greater than off-diagonals
- significantly limits expressive power
- How do we fix this?

Issues With Self-Attention

•
$$\mathbf{O} = \operatorname{Attention}(\mathbf{X}, \mathbf{X}, \mathbf{X}) = \operatorname{softmax}\left(\frac{\mathbf{X}\mathbf{X}^{\top}}{\sqrt{C}}\right)\mathbf{X}$$

- $\alpha_{i,j} \leq \max(\alpha_{i,i}, \alpha_{j,j})$
- diagonal always be greater than offdiagonals
- significantly limits expressive power
- Solution: Apply linear transformation to
 Q, K, V

Attention with weights

Attention($\mathbf{X}; \mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$)

= Attention(\mathbf{XW}_Q , \mathbf{XW}_K , \mathbf{XW}_V)

• = Softmax
$$\left(\frac{\mathbf{X}\mathbf{W}_{\mathcal{Q}}(\mathbf{X}\mathbf{W}_{K})^{\top}}{\sqrt{d_{k}}}\right)\mathbf{X}\mathbf{W}_{V}$$

. Learnable parameters: $\mathbf{W}_{\mathcal{Q}}, \, \mathbf{W}_{\mathit{K}}, \, \mathbf{W}_{\mathit{V}}$

Issues with attention with weights

- Single attention weight / softmax
 - Can only attention to one other element or average values of a few

Multi-Head Attention

• Simple concatenation of multiple attention layers ("heads")

Attention(
$$\mathbf{X}; \mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$$
)

= Attention(XW_Q , XW_K , XW_V)

• = Softmax
$$\left(\frac{\mathbf{X}\mathbf{W}_{\mathcal{Q}}(\mathbf{X}\mathbf{W}_{K})^{\top}}{\sqrt{d_{k}}}\right)\mathbf{X}\mathbf{W}_{V}$$

- Learnable parameters per head: $\mathbf{W}_{\mathcal{Q}}, \mathbf{W}_{\mathcal{K}}, \mathbf{W}_{\mathcal{V}}$

Multi-Head Attention

- $oldsymbol{\cdot}$ h heads, each with a set of linear projections
 - $\mathbf{W}_{K,h} \in \mathbb{R}^{C \times d_k}$
 - $\mathbf{W}_{Q,h} \in \mathbb{R}^{C \times d_k}$
 - $\mathbf{W}_{V,h} \in \mathbb{R}^{C \times d_v}$
- A final linear projection to map to output dimension
 - $\mathbf{W}_O \in \mathbb{R}^{hd_v \times C}$

$$\begin{bmatrix} \text{Attention}(\mathbf{X}\mathbf{W}_{Q,1},\mathbf{X}\mathbf{W}_{K,1},\mathbf{X}\mathbf{W}_{V,1}) \\ \vdots \\ \text{Attention}(\mathbf{X}\mathbf{W}_{Q,h},\mathbf{X}\mathbf{W}_{K,h},\mathbf{X}\mathbf{W}_{V,h}) \end{bmatrix}$$

Connection to Convolution

• Multi-head attention with h heads is more expressive than a $\sqrt{h} \times \sqrt{h}$ 2D conv [1]

Attention - TL;DR

- Attention is a **set operation** which reasons about set elements
- Attention takes three inputs queries, keys and values
- Always use multi-head attention (with weights)

Positional embeddings

Recap: Attention with weights

Attention($\mathbf{X}; \mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$)

= Attention(\mathbf{XW}_Q , \mathbf{XW}_K , \mathbf{XW}_V)

• = Softmax
$$\left(\frac{\mathbf{X}\mathbf{W}_{\mathcal{Q}}(\mathbf{X}\mathbf{W}_{K})^{\top}}{\sqrt{d_{k}}}\right)\mathbf{X}\mathbf{W}_{V}$$

. Learnable parameters: $\mathbf{W}_{\mathcal{Q}},\,\mathbf{W}_{\mathit{K}},\,\mathbf{W}_{\mathit{V}}$

Permutation Invariance

- Attention is a set operation
 - shuffling keys/values gives the same output
- Let Perm(M) denote an arbitrary permutation operation over the rows of a matrix M

Attention(\mathbf{XW}_Q , Perm(\mathbf{XW}_K), Perm(\mathbf{XW}_V))

• = Attention(\mathbf{XW}_Q , \mathbf{XW}_K , \mathbf{XW}_V)

Example: Set Operations

 Given a set of reported power outages in the last few days, predict the number of power outages in the future

Power Outages in Texas, Day by Day

Sunday, 7 p.m.
110,000 customers (0.9%)

Monday, 3 a.m. 1.1 million customers (8.8%)

Monday, 10 p.m. 4.5 million customers (31.6%)

Tuesday, 12:15 p.m. 4.4 million customers (35.1%)

Wednesday, 11:30 a.m. 3.4 million customers (27%)

Thursday, 10:30 a.m. 490,000 customers (3.9%)

ercentage of customers without power

0% 50% 100

Image credit: New York Times

Example: Ordered Operations

- Natural Language ordered array of words
 my kid likes the movie ≠ the movie likes my kid
- Speech sequence of sound waves
- Images ordered set of smaller patches
 - What happens when you shuffle an image?
 - Fun demo: Visual Anagrams [1]

a painting of a deer

an oil painting of flowers

a painting of houseplants

[1] Geng, et al. Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models. CVPR 2024

Example: Somewhat Ordered Operations

- Point Clouds
 - Set of N points $p_i \in \mathbb{R}^3$ $P = \{p_1, p_2, \dots, p_N\}$

Attention without Positional Embeddings

Attention($X; W_Q, W_K, W_V$)

= Attention(\mathbf{XW}_Q , \mathbf{XW}_K , \mathbf{XW}_V)

• = Softmax
$$\left(\frac{\mathbf{X}\mathbf{W}_{\mathcal{Q}}(\mathbf{X}\mathbf{W}_{K})^{\top}}{\sqrt{d_{k}}}\right)\mathbf{X}\mathbf{W}_{V}$$

Attention With Positional Embedding

- Describes the location of elements in a sequence
 - add position information to Q, K, V

Absolute Positional Embeddings

• Option 1: Raw position

Absolute Positional Embeddings

- Option 1: Raw position
 - Bad idea : Hard to interpret

Sinusoidal Embeddings

- Option 2: encode position with sine/cosine $PE \in \mathbb{R}^{N \times C}$
 - Use sine & cosine functions with varied frequencies

$$PE(n,2i) = \sin\left(\frac{n}{10000^{2i/C}}\right)$$

• PE
$$(n,2i+1) = \cos\left(\frac{n}{10000^{2i/C}}\right)$$

- Je "Kind of" absolute
- de Position represented well by frequency/phase

Learnable Positional Embedding

- Option 3: learned encoding
 - Embeddings $PE \in \mathbb{R}^{N \times C}$ randomly initialized
 - Learned through training
- 👍 Fully learned
- Use when frequency information is not obvious
- Performance drops when the sequence length varies between train/test

Learnable positional embeddings

• Example: Vision Transformer (ViT)

Dosovitskiy, et al. "An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021

Relative Positional Embedding (1): T5-bias

- Option 4a: pairwise/relative encoding
 - Takes the form of PE(m, n) = f(m, n)

$$\mathbf{O} = \operatorname{softmax} \left(\frac{\mathbf{X} \mathbf{W}_{\mathcal{Q}} (\mathbf{X} \mathbf{W}_{K})^{\top} + \mathbf{B}}{\sqrt{C}} \right) (\mathbf{X} \mathbf{W}_{V})$$

$$\mathbf{B} = \begin{bmatrix} b_0 & b_{-1} & b_{-2} & \cdots & b_{-N+1} \\ b_1 & b_0 & b_{-1} & \cdots & b_{-N+2} \\ b_2 & b_1 & b_0 & \cdots & b_{-N+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{N-1} & b_{N-2} & b_{N-3} & \cdots & b_0 \end{bmatrix}$$

• de Generalizes better to sequences of unseen lengths

Raffel, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR 2020.

Relative Positional Embedding (2): Alibi

- Option 4b: pairwise/relative encoding
 - Takes the form of PE(m, n) = f(m, n)

$$\mathbf{O} = \operatorname{softmax} \left(\frac{\mathbf{X} \mathbf{W}_{\mathcal{Q}} (\mathbf{X} \mathbf{W}_{K})^{\top} + \mathbf{B}}{\sqrt{C}} \right) (\mathbf{X} \mathbf{W}_{V})$$

• de Generalizes better to sequences of unseen lengths

Press et al. Train short, test long: Attention with linear biases enables input length extrapolation. ICLR 2022

Relative Positional Embedding (3)

- Option 4c: pairwise/relative encoding
 - Encode edge between two arbitrary positions i and j

$$\mathbf{O} = \operatorname{softmax} \left(\frac{\mathbf{X} \mathbf{W}_{Q} (\mathbf{X} \mathbf{W}_{K} + \mathbf{P}_{ij}^{K})^{\top}}{\sqrt{C}} \right) (\mathbf{X} \mathbf{W}_{V} + \mathbf{P}_{ij}^{V})$$

Rotary Positional Embedding: RoPE

- Option 5: rotary encoding
 - Both absolute PE and relative PE
 - Goal: find a kernel function such that

•
$$h(\mathbf{q}_m, \mathbf{k}_n) = \mathbf{q}_m^{\mathsf{T}} \mathbf{k}_n = g(\mathbf{q}_m, \mathbf{k}_n, m - n)$$

$$\mathbf{q}_m = \mathbf{R}_m \mathbf{W}_Q \mathbf{x}_m \qquad \mathbf{k}_n = \mathbf{R}_n \mathbf{W}_K \mathbf{x}_n$$

$$\mathsf{where}\,\mathbf{R}_{m} = \begin{bmatrix} \cos(m\theta_{1}) & -\sin(m\theta_{1}) & 0 & 0 & \cdots & 0 & 0 \\ \sin(m\theta_{1}) & \cos(m\theta_{1}) & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos(m\theta_{2}) & -\sin(m\theta_{2}) & \cdots & 0 & 0 \\ 0 & 0 & \sin(m\theta_{2}) & \cos(m\theta_{2}) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cos(m\theta_{C/2}) & -\sin(m\theta_{C/2}) \\ 0 & 0 & 0 & 0 & \cdots & \sin(m\theta_{C/2}) & \cos(m\theta_{C/2}) \end{bmatrix}$$

Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding. Neurocomputing 2024

Rotary Positional Embedding

$$\mathbf{q}_{m} = \mathbf{R}_{m} \mathbf{W}_{Q} \mathbf{x}_{m}$$

$$\mathbf{k}_{n} = \mathbf{R}_{n} \mathbf{W}_{K} \mathbf{x}_{n}$$

$$\mathbf{q}_{m}^{\mathsf{T}} \mathbf{k}_{n} = (\mathbf{R}_{m} \mathbf{W}_{Q} \mathbf{x}_{m})^{\mathsf{T}} \mathbf{R}_{n} \mathbf{W}_{K} \mathbf{x}_{n}$$

$$= \mathbf{x}_{m}^{\mathsf{T}} \mathbf{W}_{Q}^{\mathsf{T}} \mathbf{R}_{n-m} \mathbf{W}_{k} \mathbf{x}_{n}$$

- Great extrapolation capability when context length between train/test varies
- Widely adopted in Large Language Models (LLMs) such as LLaMA

Touvron, et al. LLaMA: Open and efficient foundation language models. arXiv:2302.13971

Applications of PE: LLMs

 PEs are widely used in Large Language Models (LLM)

Applications of PE: Implicit functions

- $f: \mathbb{R}^2 \to \mathbb{R}^3$ modeled by a network (e.g. MLP)
- Input: pixel coordinate $\mathbf{v} = [x, y]^{\mathsf{T}}$
- Output: color value $[r, g, b]^T$

Positional Embeddings - TL;DR

- Positional embeddings are used to break permutation invariance
- Positional embeddings encode location-related information
- Many types of PEs: absolute, sinusoidal, learnable, relative, rotary

The Transformer Architecture

Recap: Multi-Head Attention

h heads, each with a set of linear projections

$$\begin{bmatrix} \text{Attention}(\mathbf{X}\mathbf{W}_{Q,1},\mathbf{X}\mathbf{W}_{K,1},\mathbf{X}\mathbf{W}_{V,1}) \\ \vdots \\ \text{Attention}(\mathbf{X}\mathbf{W}_{Q,h},\mathbf{X}\mathbf{W}_{K,h},\mathbf{X}\mathbf{W}_{V,h}) \end{bmatrix} W_O$$

 Good at mixing information across various inputs / tokens

Recap: Scaling wide A Simple Solution

- Token-level MLP
 - Good at processing local information

Transformer Layer

 Attention + MLP + Residual / Normalization

Transformer

- Input: Set of tokens $\{x_i\}$
- Output: Set of tokens $\{y_i\}$
- Stack N transformer layers

Transformer

- Input: Set of tokens $\{x_i\}$
- Output: Set of tokens $\{y_i\}$
- Stack N transformer layers

Classification with transformers

- Input: Set of tokens $\{x_i\}$
- Output: Set of tokens $\{y_i\}$
- Prepend "classification" token

The Transformer Architecture - TL;DR

- Transformer layer = MHA + MLP + LN + residual connection
- A Transformer is a stack of N transformer layers

Applications of transformers

What Else Can We Do With Transformers?

Machine Translation

Input: a sentence in a given language

Output: translation to another language

English: I love deep learning

A团 Chinese: 我愛深度學習

Challenges of Machine Translation

▲ Length of input != length of output

A Hard to produce coherent output tokens simultaneously

Auto-Regressive Prediction

Predict one token (word) at a time

1.
$$P(\tilde{\mathbf{y}}_1|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6)$$

2.
$$P(\tilde{\mathbf{y}}_2|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\tilde{\mathbf{y}}_1)$$

3.
$$P(\mathbf{\tilde{y}}_3|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{\tilde{y}}_1,\mathbf{\tilde{y}}_2)$$

4.
$$P(\tilde{\mathbf{y}}_4|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\tilde{\mathbf{y}}_1,\tilde{\mathbf{y}}_2,\tilde{\mathbf{y}}_3)$$

• • •

Until $\mathbf{\tilde{y}}_t$ hits an end-of-sequence (EOS) token

Here, $p(\mathbf{\tilde{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{\tilde{y}}_1,\mathbf{\tilde{y}}_2,\mathbf{\tilde{y}}_{t-1})$ is modeled by an N-layer Transformer

Masked Attention

Output sequence is offset by one compared to input

Model can easily cheat by looking at future tokens

Masked Attention

$$\mathbf{O} = \operatorname{MaskedAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$$
 $= \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{C}} + \mathbf{M}\right)\mathbf{V}$

where the mask M is defined by

$$\mathbf{M} = egin{bmatrix} 0 & -\infty & \cdots & -\infty \ 0 & 0 & \cdots & -\infty \ dots & dots & dots \ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Auto-Regressive Prediction

Test Time:

Sample one token (word) at a time

$$P(\mathbf{ ilde{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{ ilde{y}}_1,\mathbf{ ilde{y}}_2,\cdots,\mathbf{ ilde{y}}_{t-1})$$

until $\mathbf{\tilde{y}}_t$ hits an end-of-sentence (<E0S>) token

© Very slow during training

Teacher Forcing

Fast training

- Condition on ground truth inputs
- Different from what is seen during generation (sampling vs ground truth)
- Fine in practice
- Parallel training of all predictions

$$P(\mathbf{ ilde{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{y}_0,\mathbf{y}_1,\cdots,\mathbf{y}_{t-1})$$

 \mathbf{y}_0 is a special end-of-sentence (<EOS> = start-of-translation) token

Transformer Layer With Masked Attention

Types of Transformers

Decoder-only

Masked auto-regressive prediction

Encoder-only

No prediction, just understanding

Encoder-Decoder

Types of Tokens

Tokens

- words or sub-words (tokenization)
- visual (e.g. image patches)
- discrete or continuous

Applications of Transformers - TL;DR

- Transformers are suitable language models, vision model, audio models, etc
- Auto-regressive next word prediction
- Efficient parallel training through teacher forcing
- Transformers process many forms of tokens