Making It Work

It = Training a deep network

Announcements

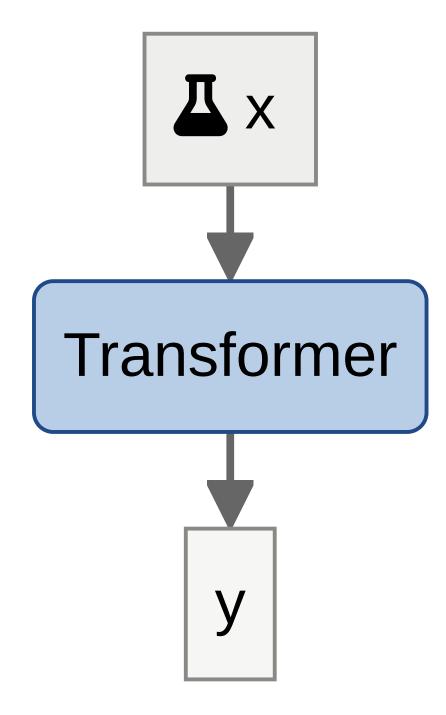
- I'll be traveling next week (class is optional)
 - TAs will go over HW03 in class
 - Will post a video with the lecture material

(Vision) Transformers in PyTorch

Making it work

Recap

Model



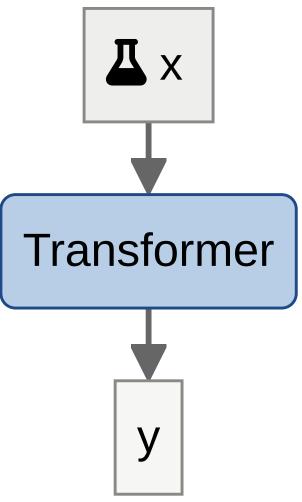
Data

Optimization

How to train a network?

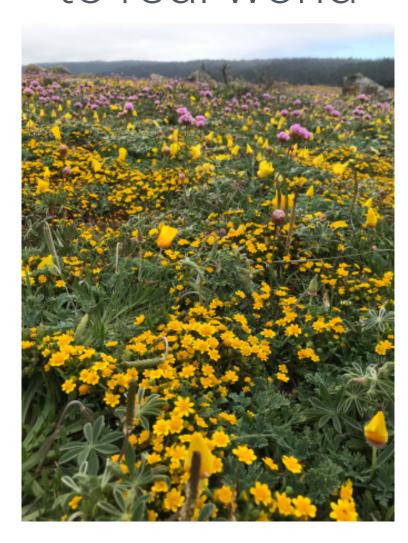
Collect Data

Design / download architecture



Train model

Apply model to real world



This never works !!!

How to train a network?

Training is an iterative process Step 2: Training 5-10% of work Train Step 1: Data curation Design / download model 70-80% of work architecture LX Collect Data Transformer Apply model Look at to real world your data Step 3: Testing 15-20% of work

Data Curation

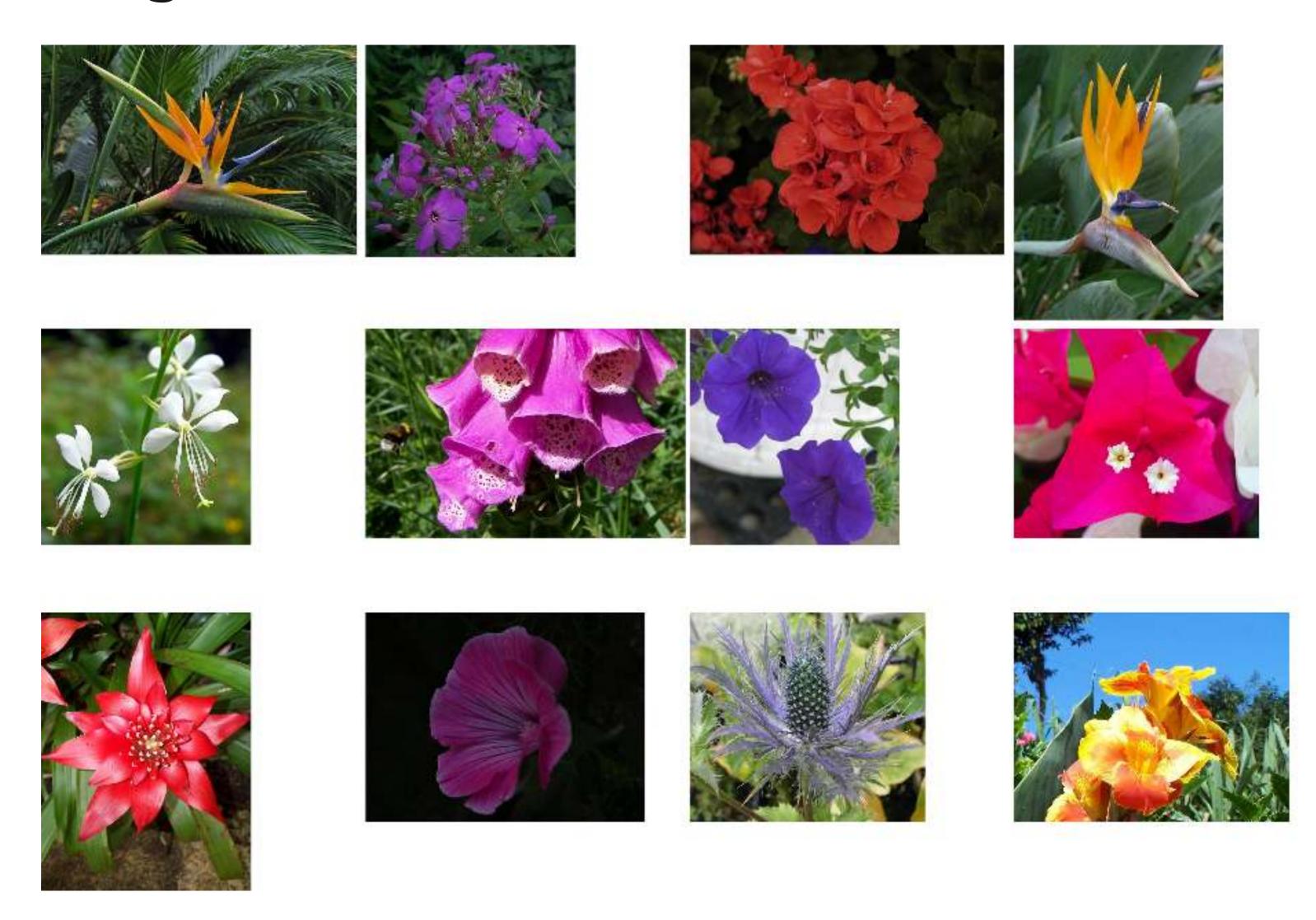
Looking at Your Data

Images

- Randomly sample
- Smallest / largest file size
- Rare classes

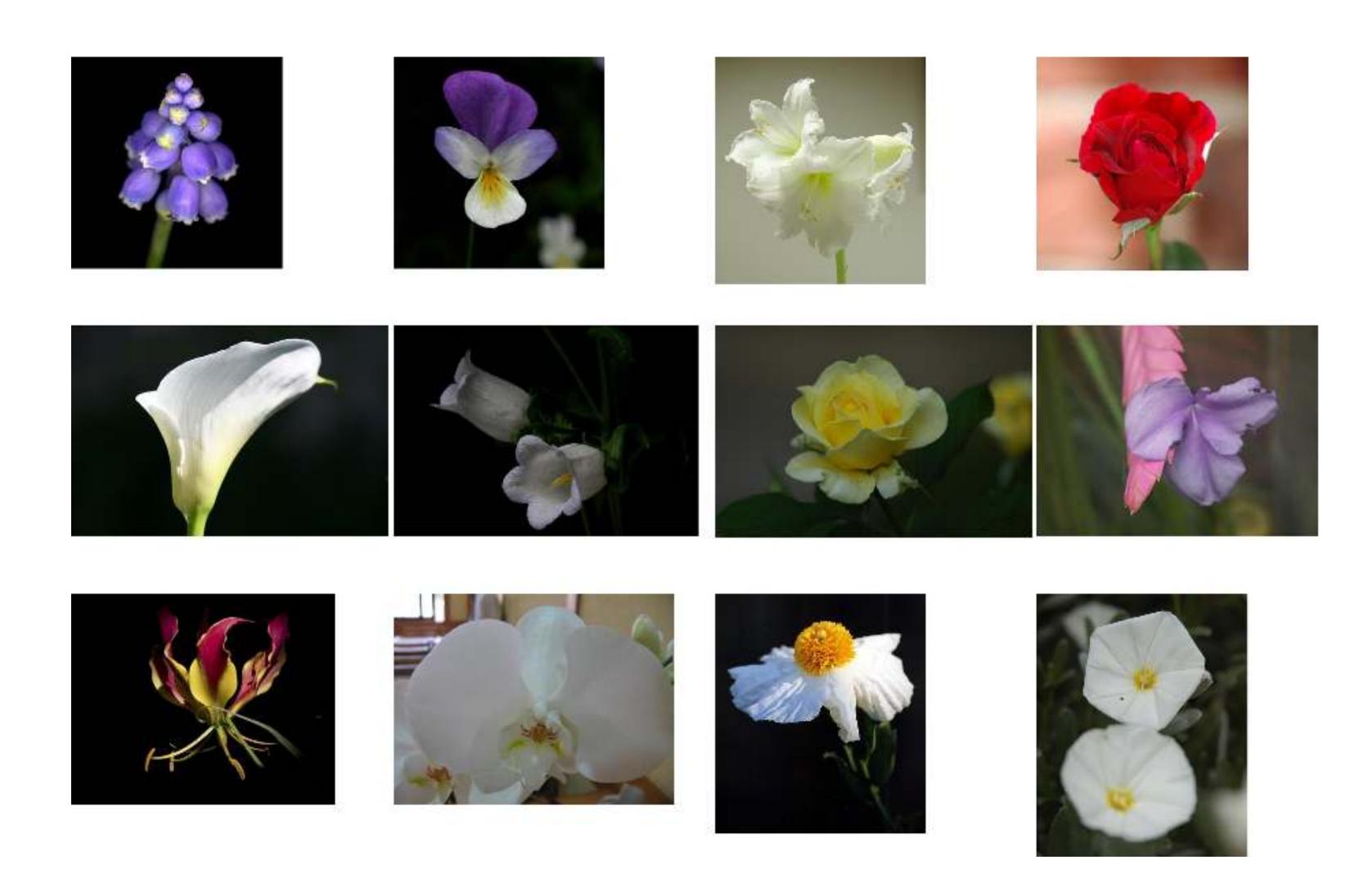
Try solving the task manually

Random Images

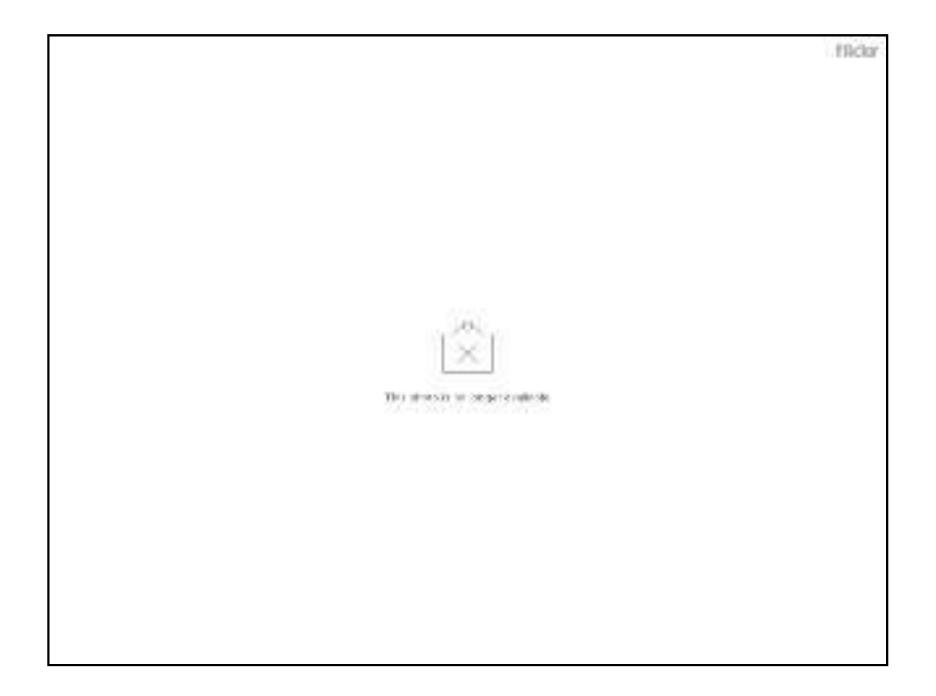


Largest File Size

Smallest File Size



Smallest File Size



Solving the Task Manually

How to train a network?

Training is an iterative process Step 2: Training 5-10% of work Train Step 1: Data curation Design / download model 70-80% of work architecture LX Collect Data Transformer Apply model Look at to real world your data Step 3: Testing 15-20% of work

More on data Next Week (video)

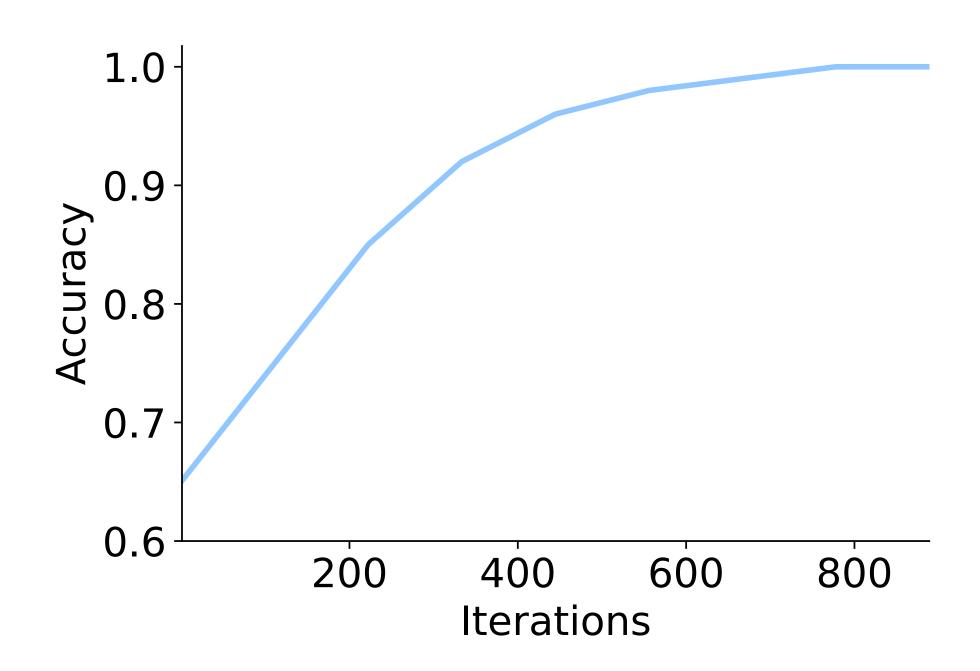
Training - Next Week (video)

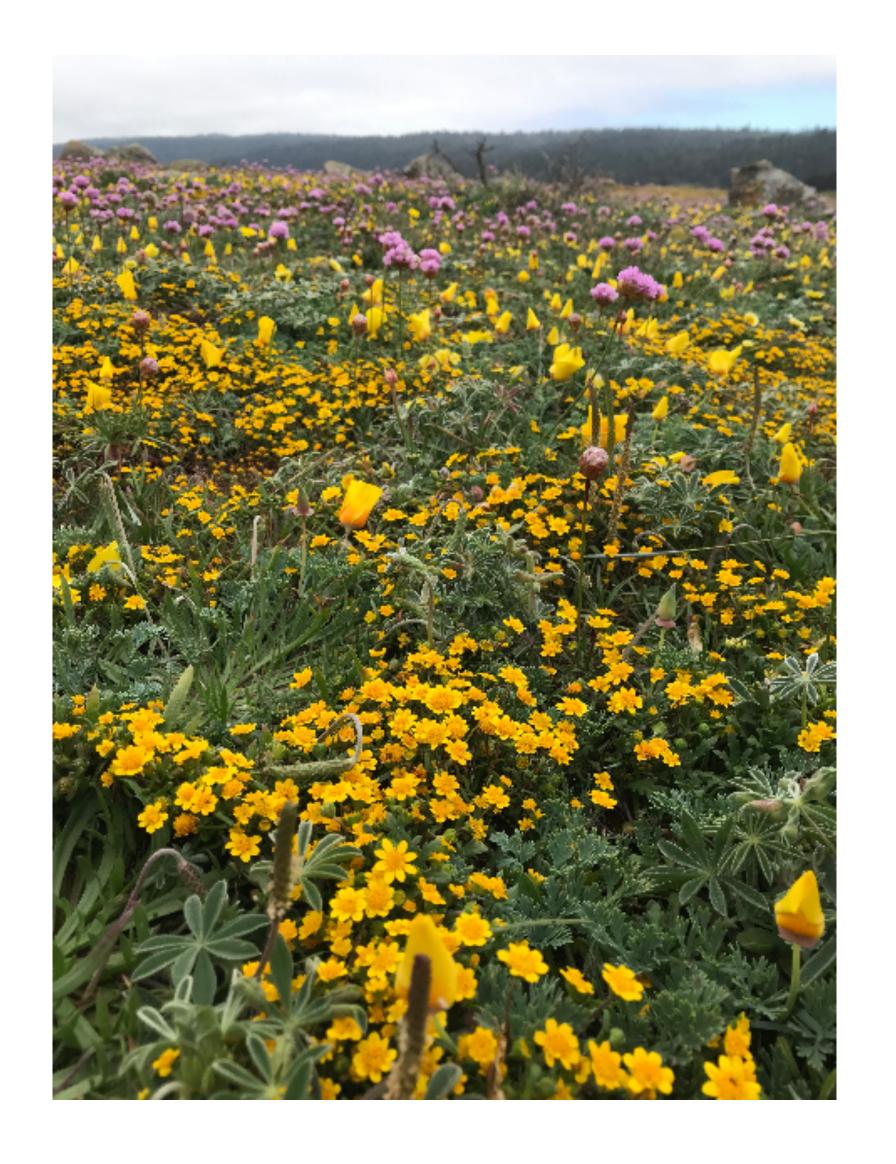
Testing

How to train a network?

Training is an iterative process Step 2: Training 5-10% of work Train Step 1: Data curation Design / download model 70-80% of work architecture LX Collect Data Transformer Apply model Look at to real world your data Step 3: Testing 15-20% of work

Perfect Training Accuracy Achieved

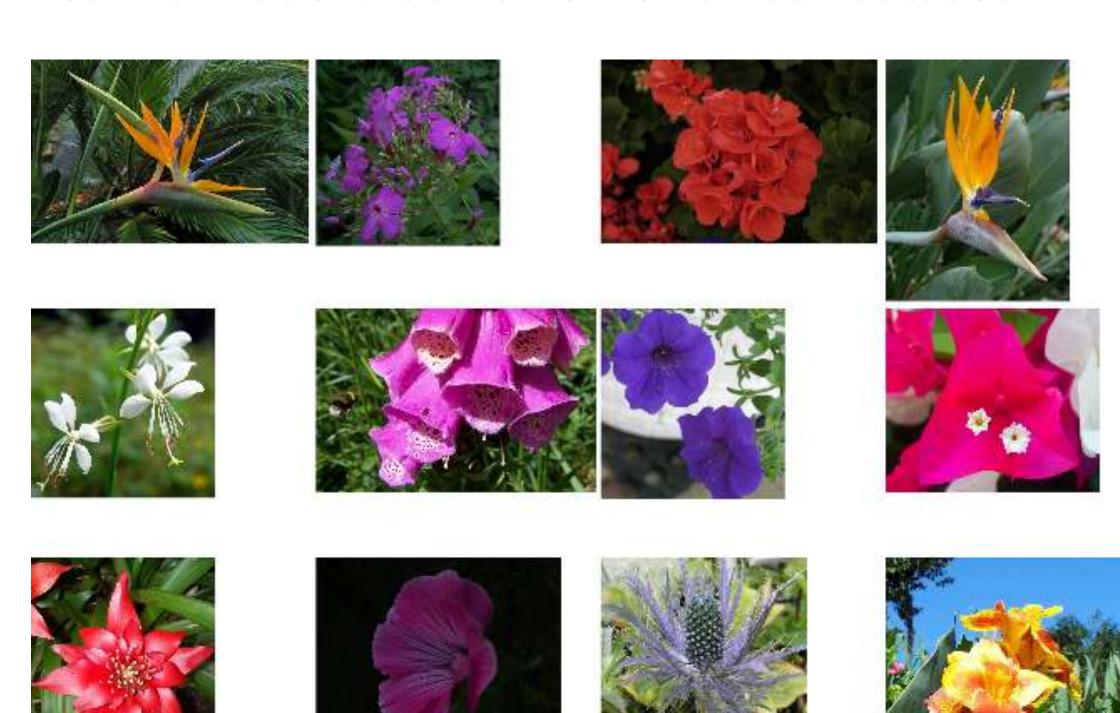




Our Data Is a Proxy for the Real World

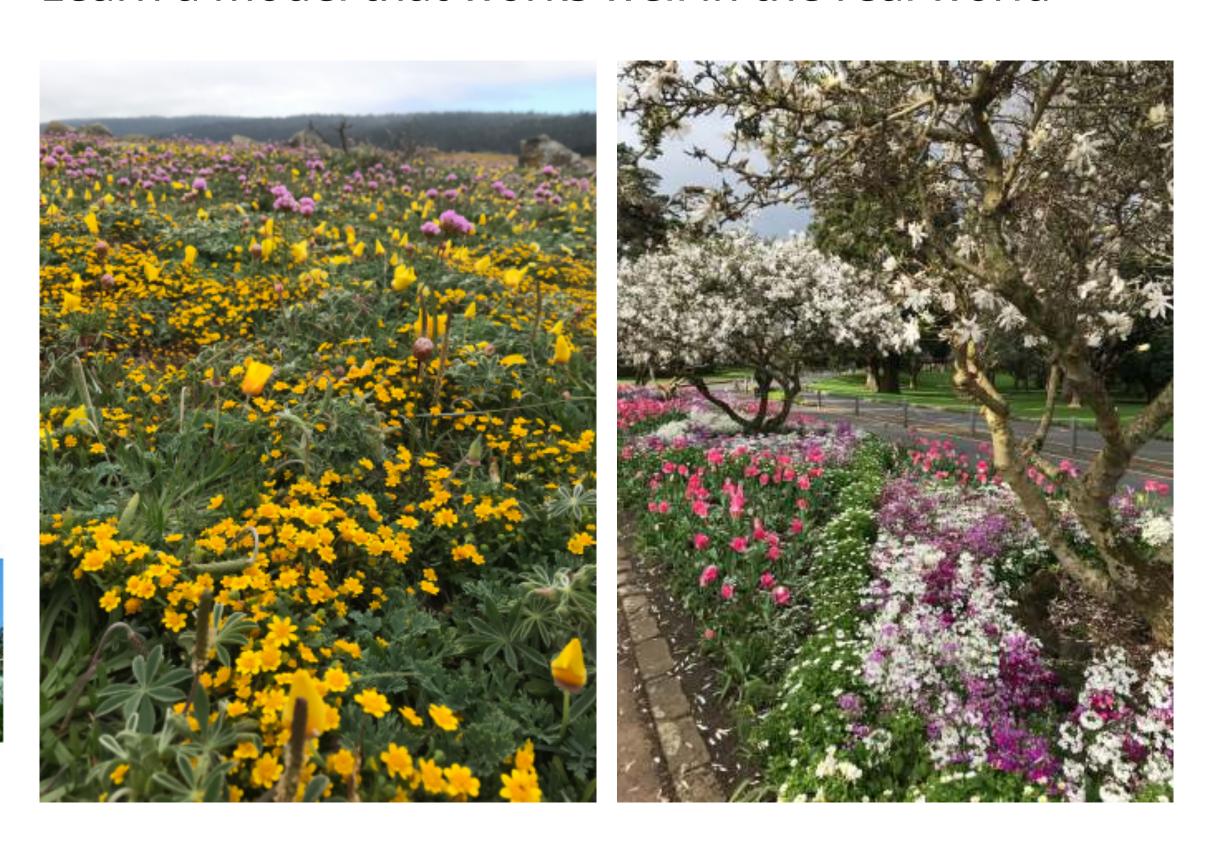
Optimization Objective

Learn a model that works well on our dataset



Goal

Learn a model that works well in the real world



Dataset Splits

Training set

Learn model parameters

Validation set

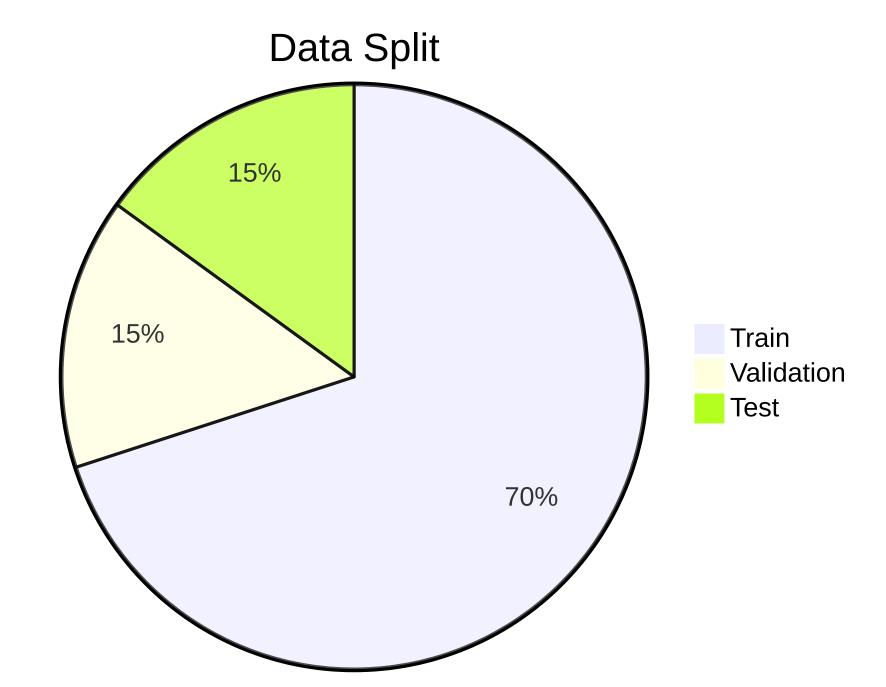
Learn hyper-parameters

Test set

Measure real world performance

Training Set

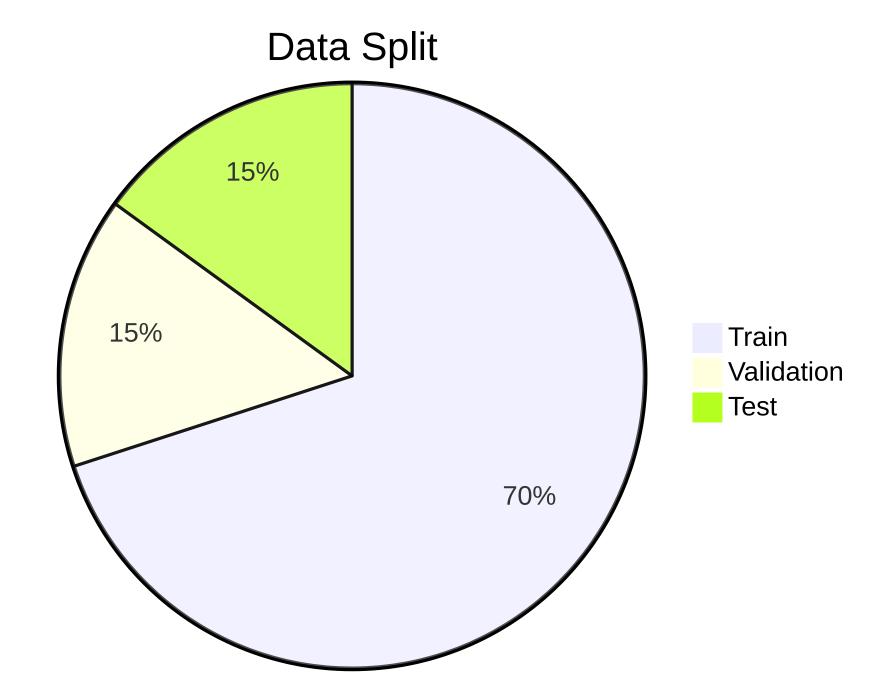
Used to train all parameters of the model Model will work very well on training set Size: 60-80% of data



Validation Set

Size: 10-20% of data

Used to determine how well the model works
Used to tune model and hyper-parameters

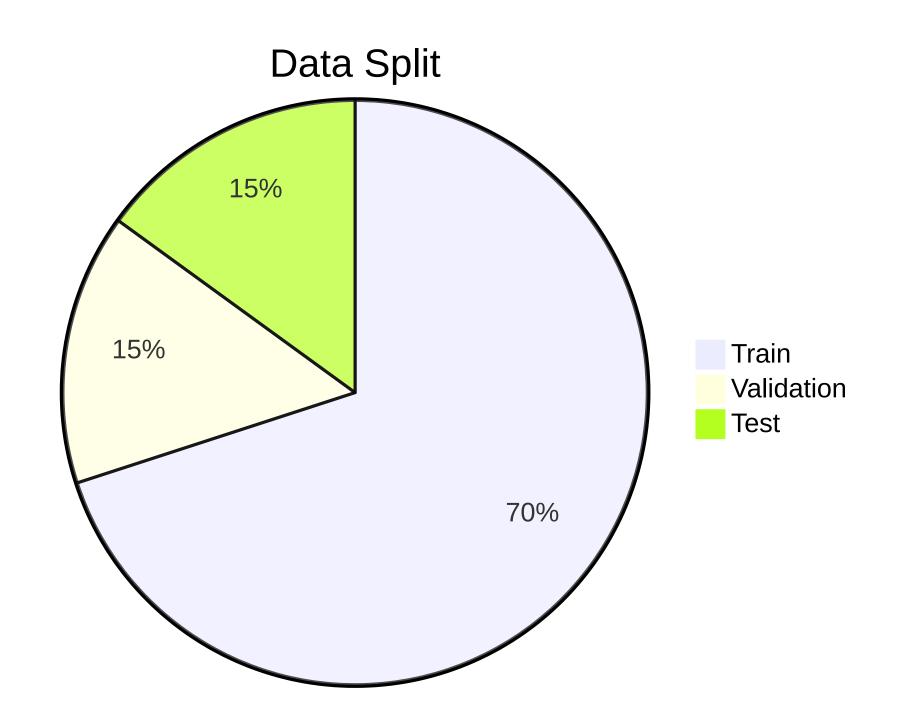


Testing Set

Used to measure model performance on unseen data

Used exactly once

Size: 10-20% of data

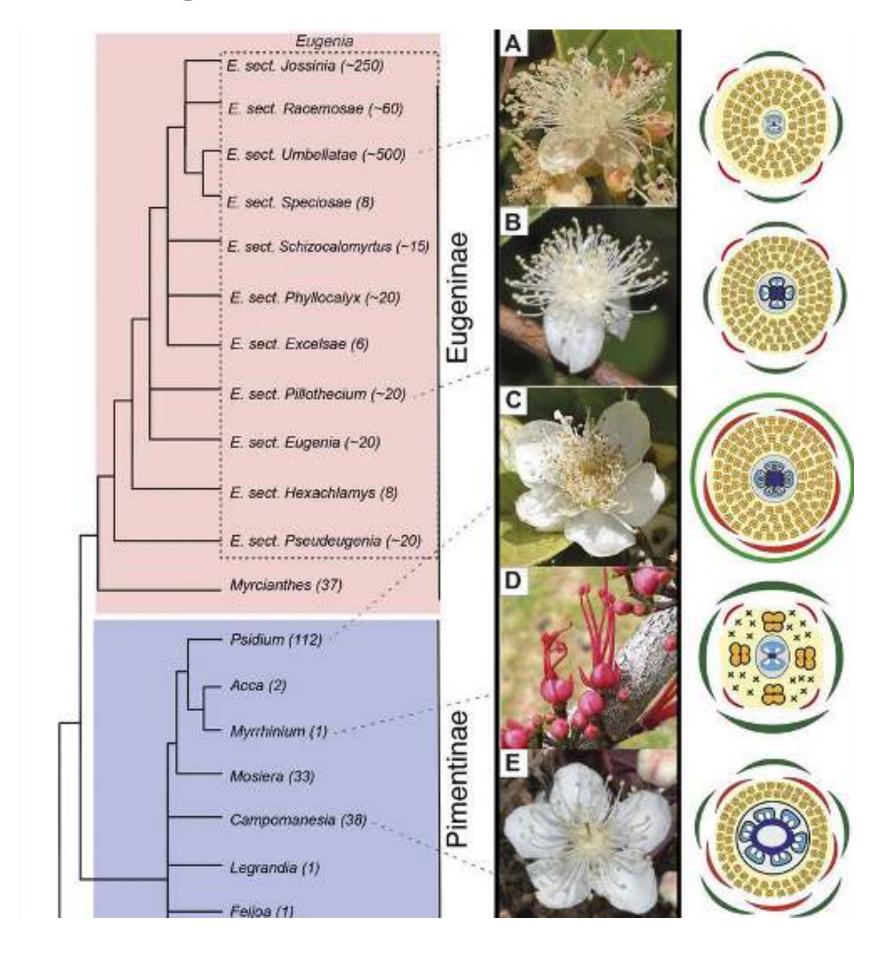


How Do We Split the Data?

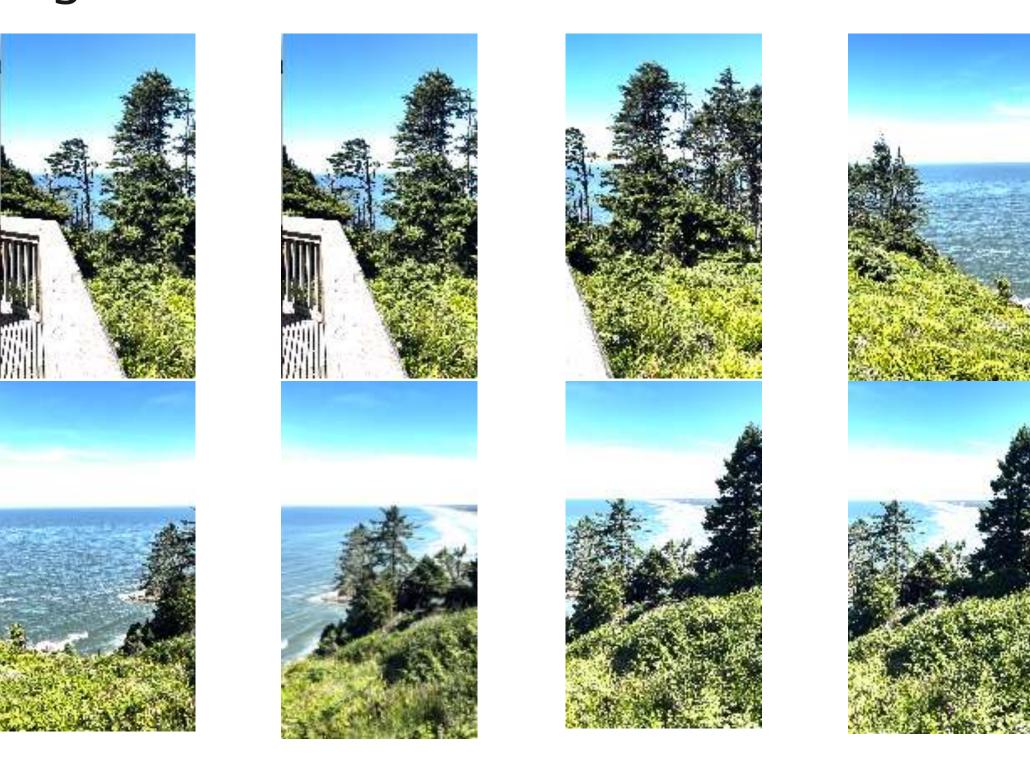
Random Sampling Without Replacement

Warning: Correlated Data

Flowers in a genus¹:



Images in a Video



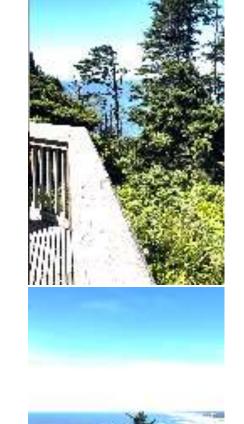
Is Correlated Data Always Bad?

Correlated Data Is Bad When

model should generalize outside the correlated data

Correlated Data Is Good When

- model should perform well on the correlated data
- e.g. auto-labeling system



Dataset Splits

Training set

Learn model parameters

Validation set

Learn hyper-parameters

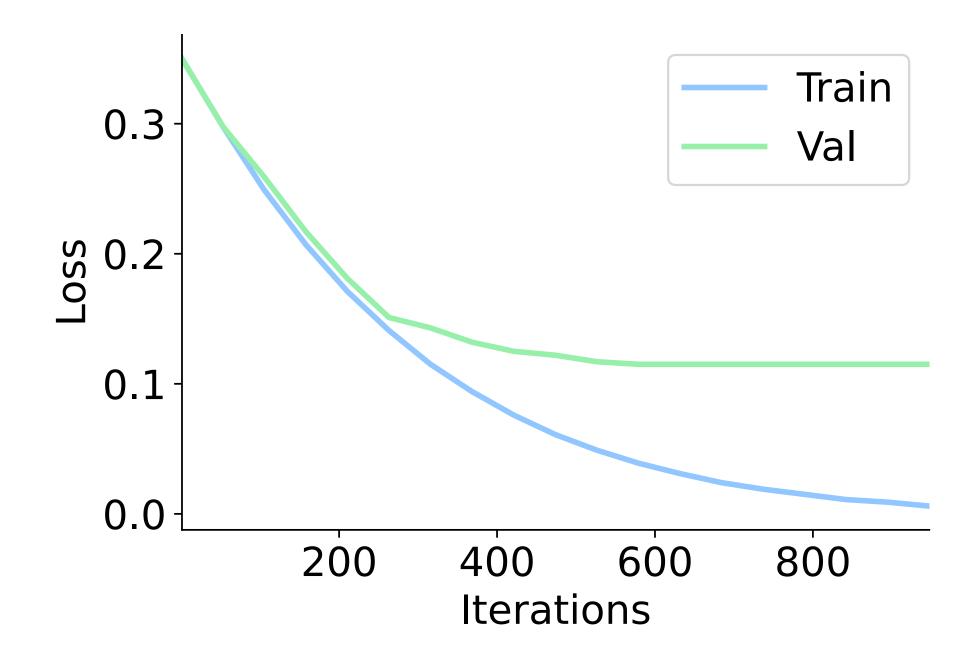
Test set

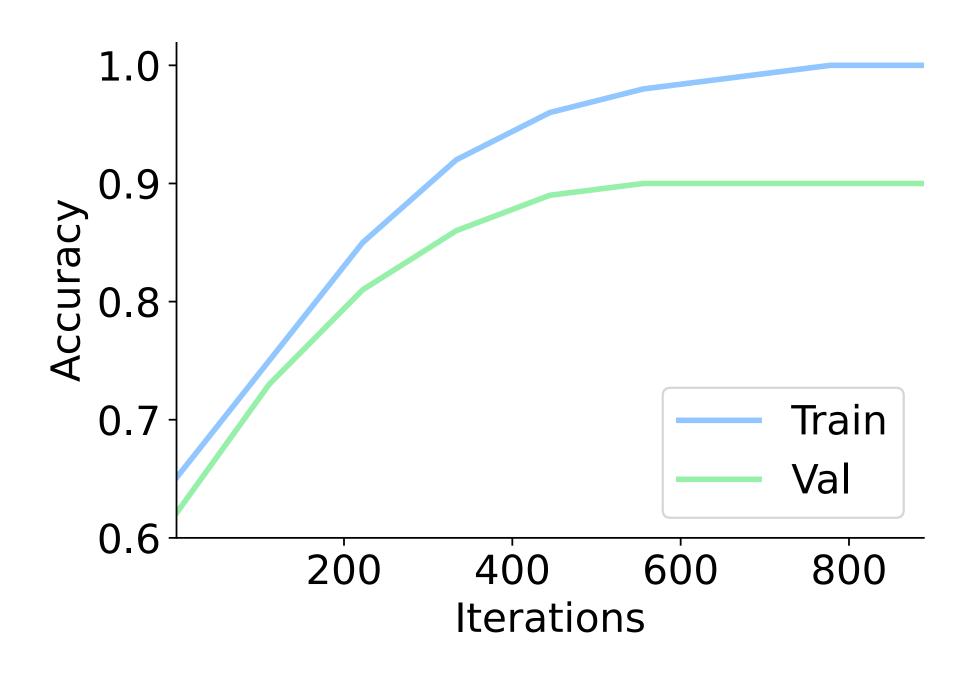
Measure real world performance

Overfitting

$$L(heta|\mathcal{D}_{train}) \ll L(heta|\mathcal{D}_{val})$$

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}_{train}}[l(heta|\mathbf{x},\mathbf{y})] \ll \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}_{val}}[l(heta|\mathbf{x},\mathbf{y})]$$



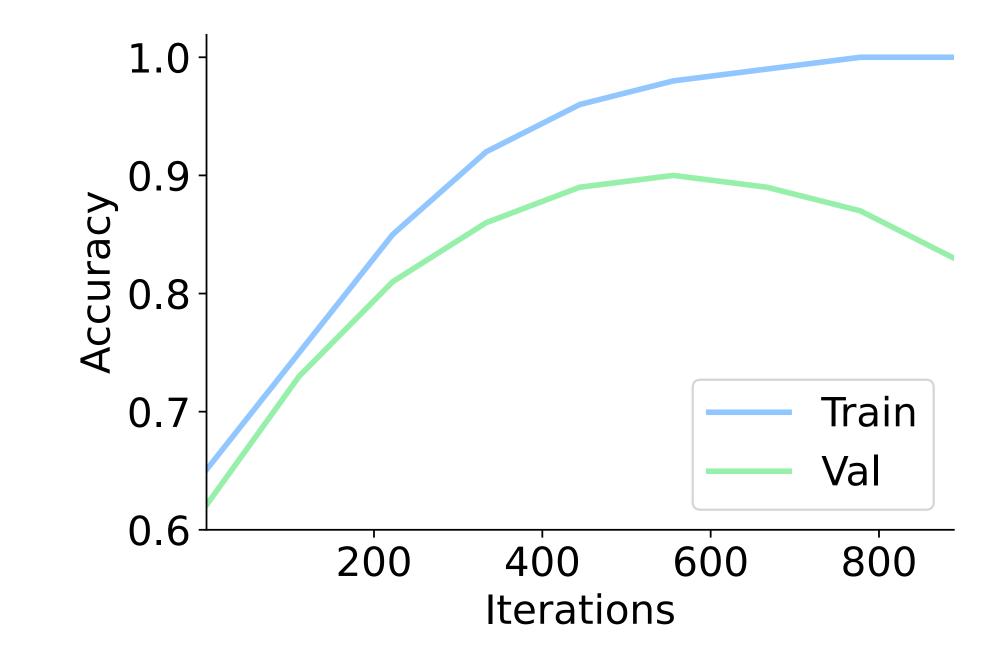


Detect overfitting with data splits

Validation set checks overfitting of **parameters** θ

Test set checks overfitting of hyper-parameters

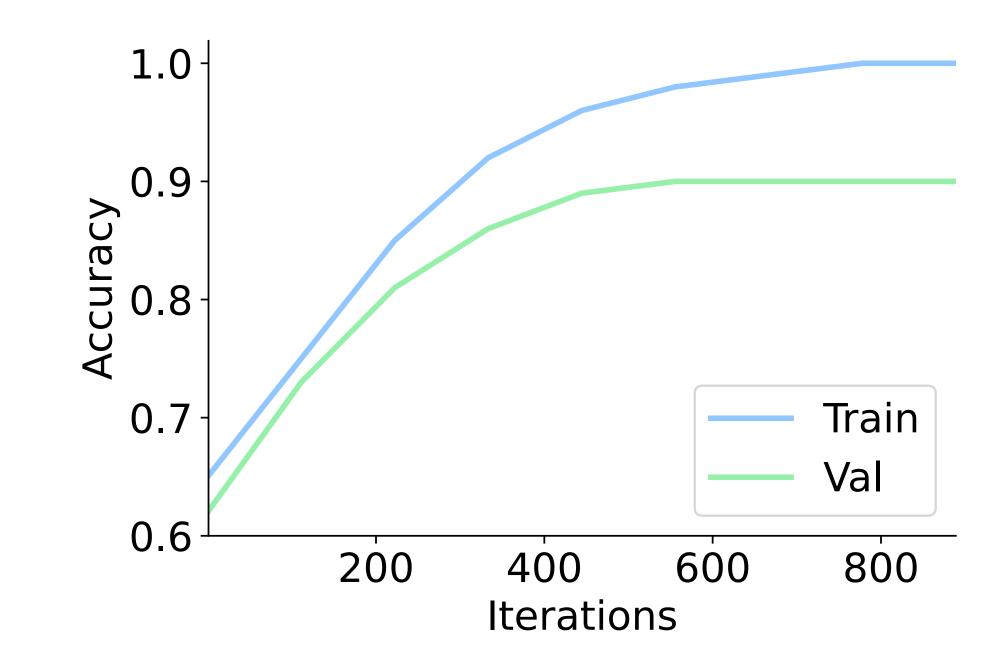
i.e. number of layers, dimensions



Is overfitting always bad?

Not Really

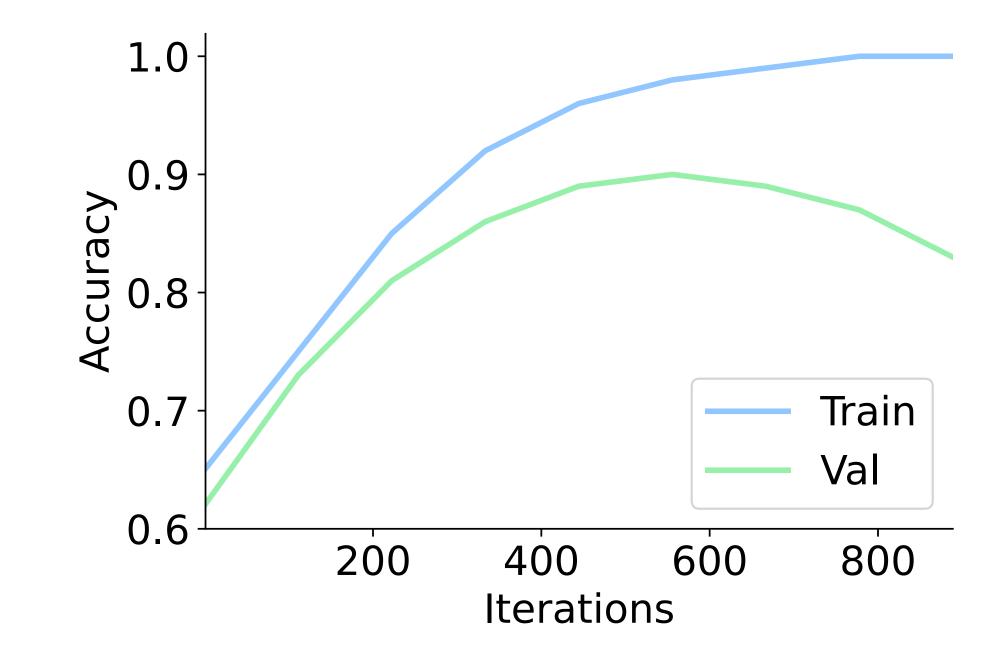
Only bad if the validation performance decreases



Why do we overfit?

Sampling bias

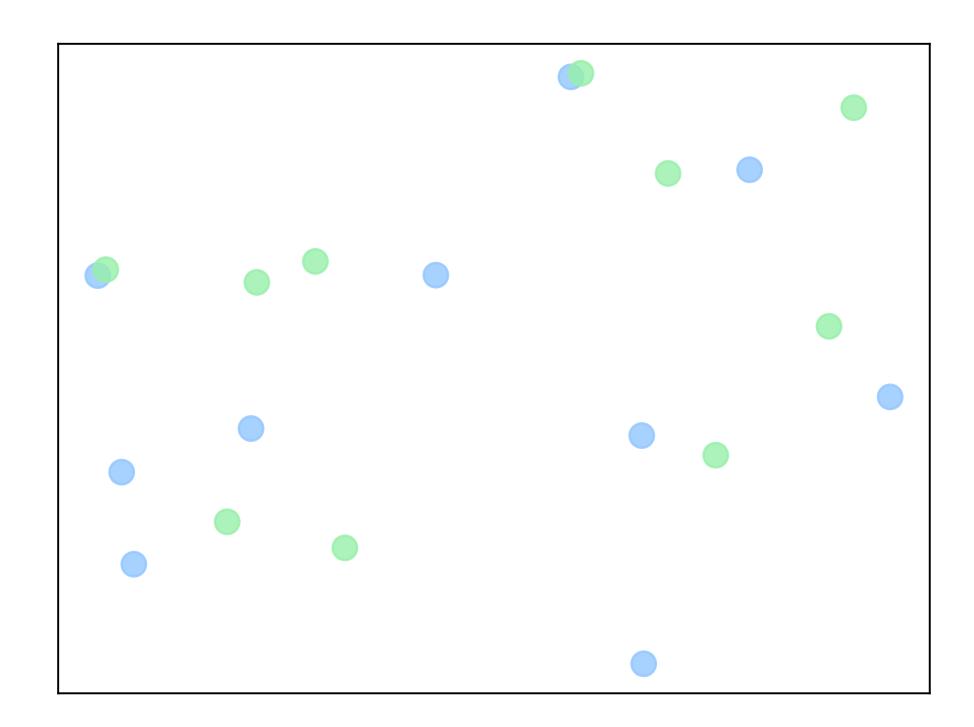
- Fitting patterns that exist only in train set
- Gradients from the same data points multiple times



Why Do We Overfit?

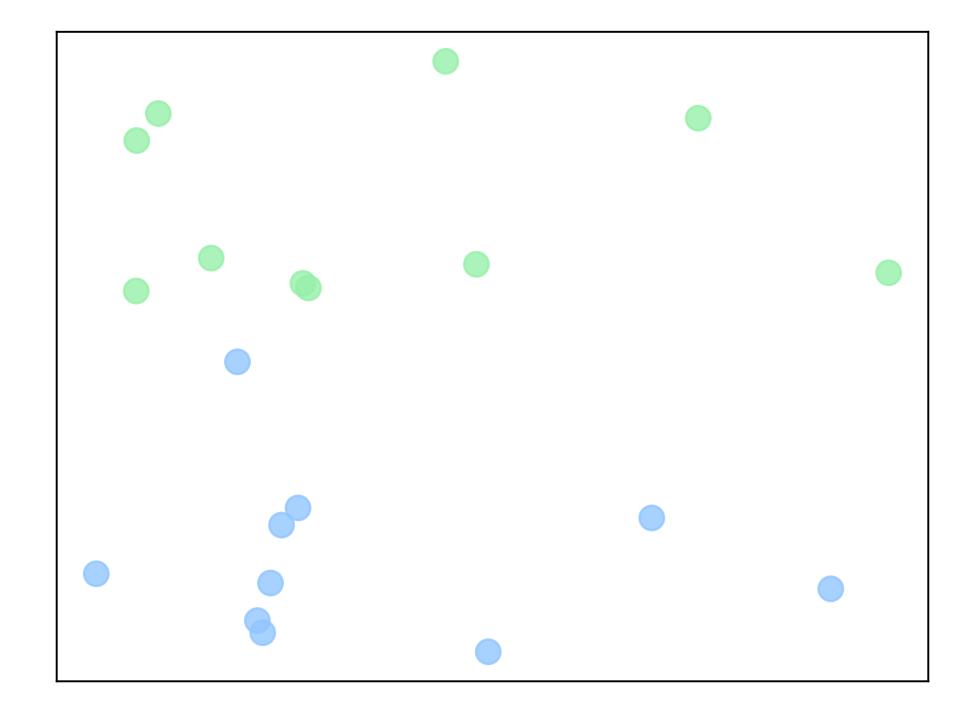
Low Dimensional

$$\mathcal{D}_{data} pprox \mathcal{D}_{train} pprox \mathcal{D}_{valid} pprox \mathcal{D}_{test}$$



High Dimensional

$$\mathcal{D}_{data}
eq \mathcal{D}_{train}
eq \mathcal{D}_{valid}
eq \mathcal{D}_{test}$$



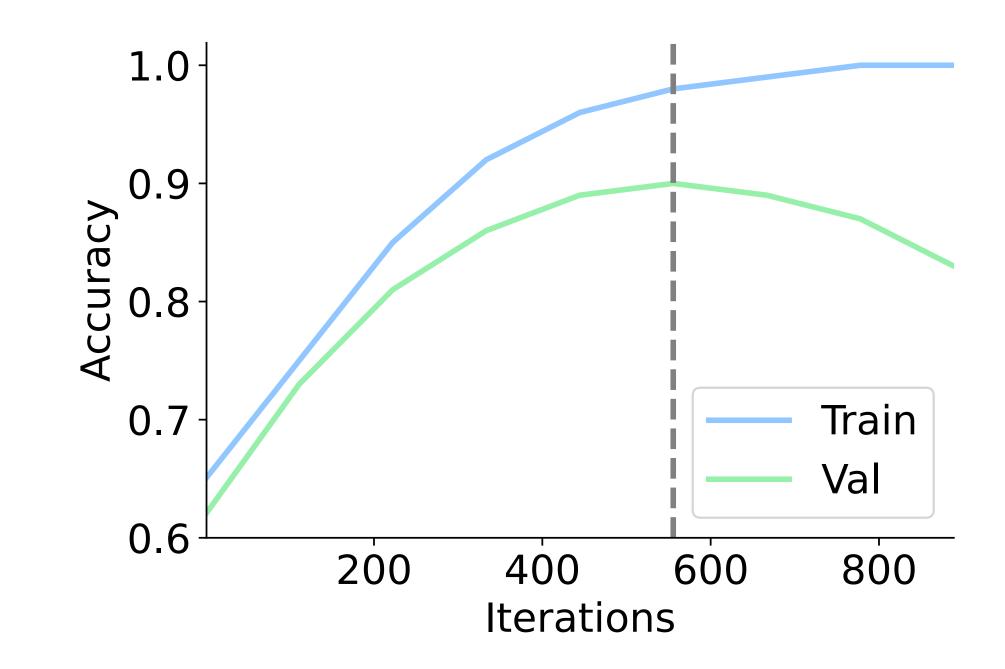
Can we overfit with infinite training data?

No

Never train on the same data instance

Preventing Overfitting: Early Stopping

Stop Training When Validation Accuracy Peaks

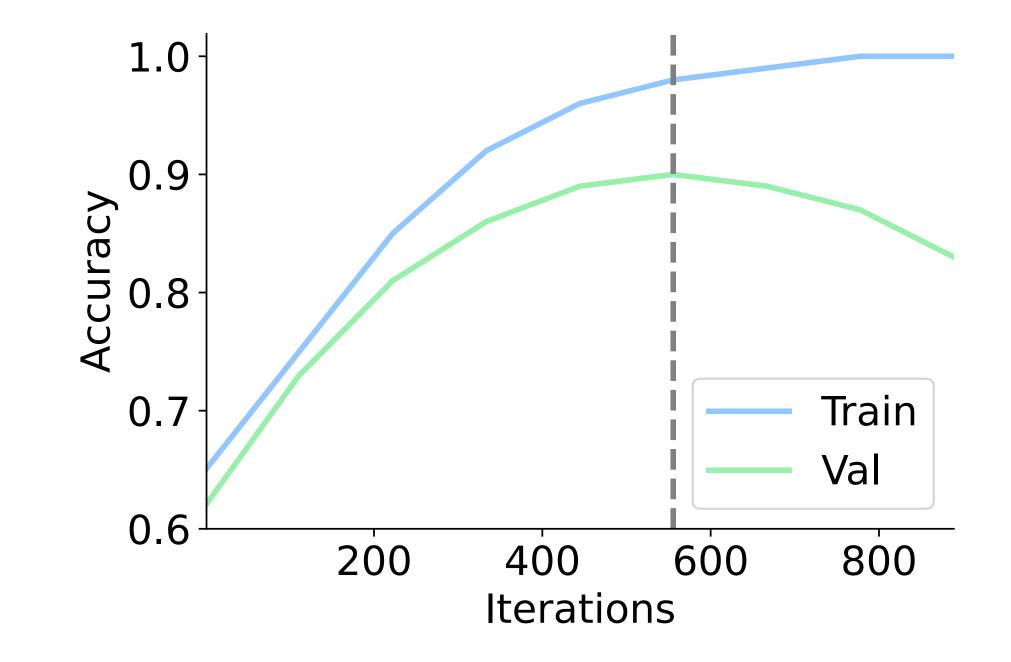


Early Stopping in Practice

No need for manual stop button

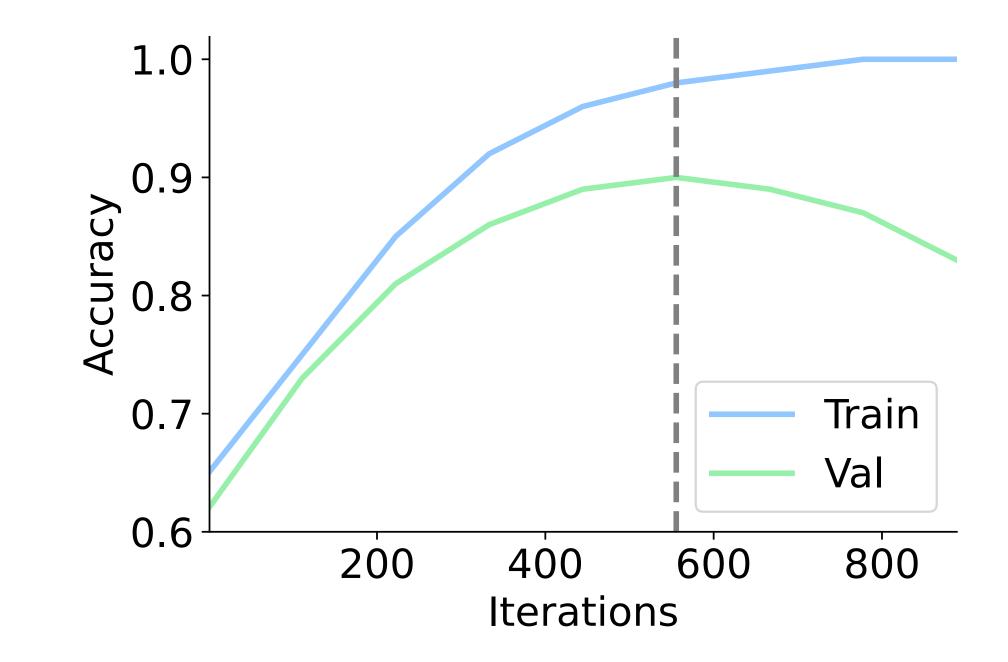
Every few epochs

- Measure validation accuracy
- Save your model

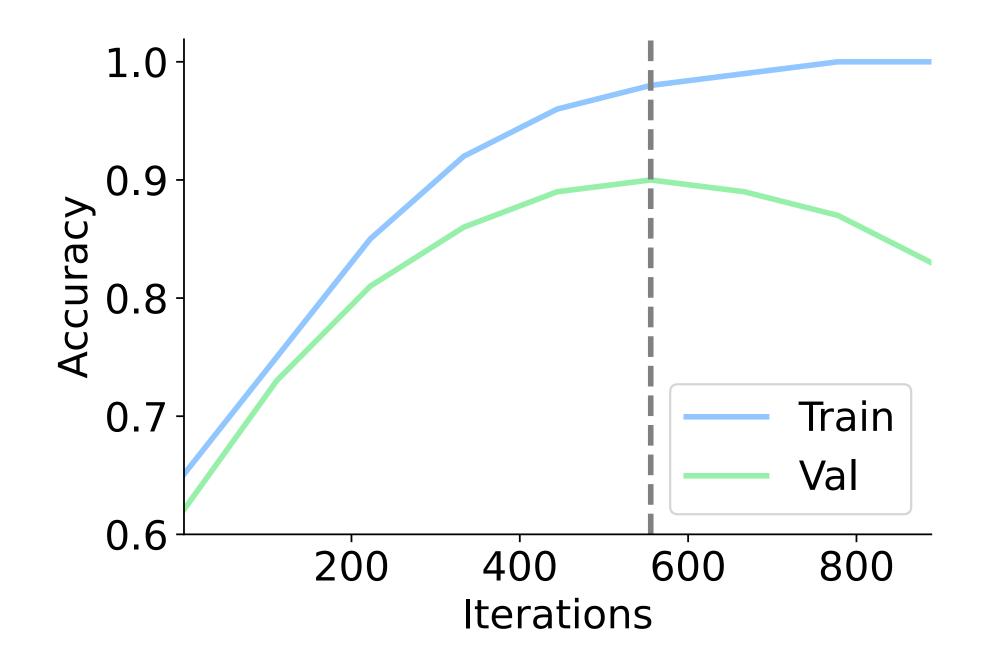


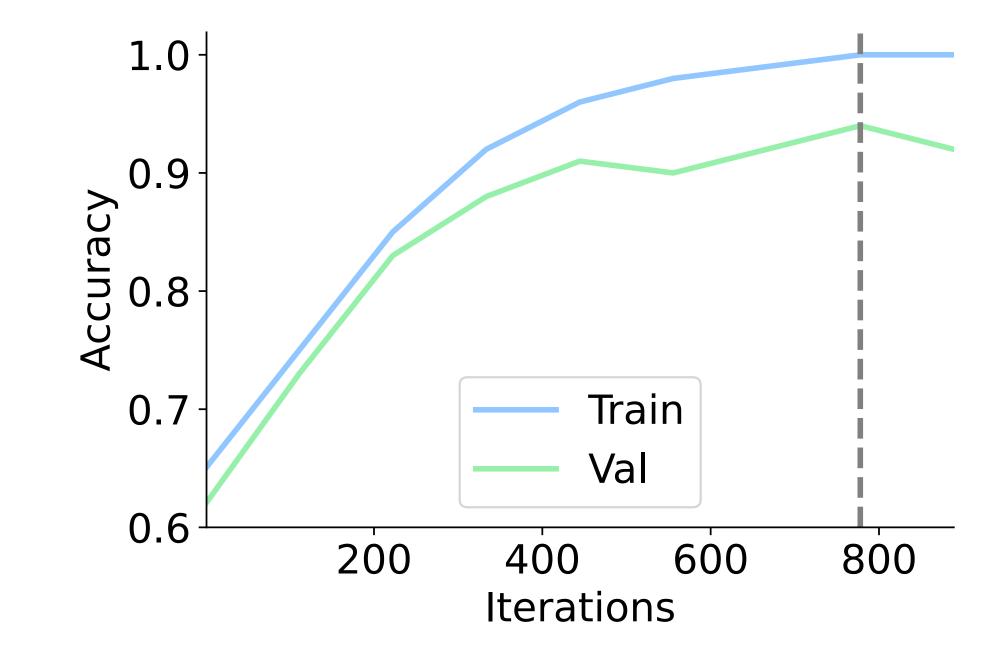
When Do We Overfit?

When we train on the same data multiple times



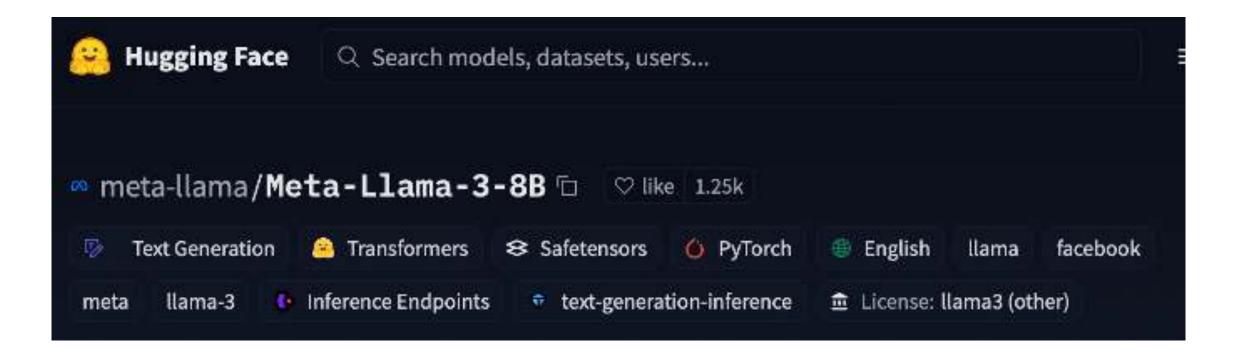
More Data Delays Overfitting





Practical Example: Large Language Models

Huge corpus of training data from the internet $\label{eq:corpus} \mbox{Never sees the same data twice during training}$ $\mbox{Cannot overfit if} < 1 \mbox{ epoch}$



How can I help you today?

What if We Cannot Get More Data?

Data Augmentation

- Make more data from our existing data
- Randomly transform data during training
- Reuse/Rephrase labels

"pink primose"

"pink primose"

"pink primose"

"pink primose"

Preventing Overfitting: Image Augmentations

Original

Tint/hue

Brightness

Crop

Rotate

Scale

Saturation

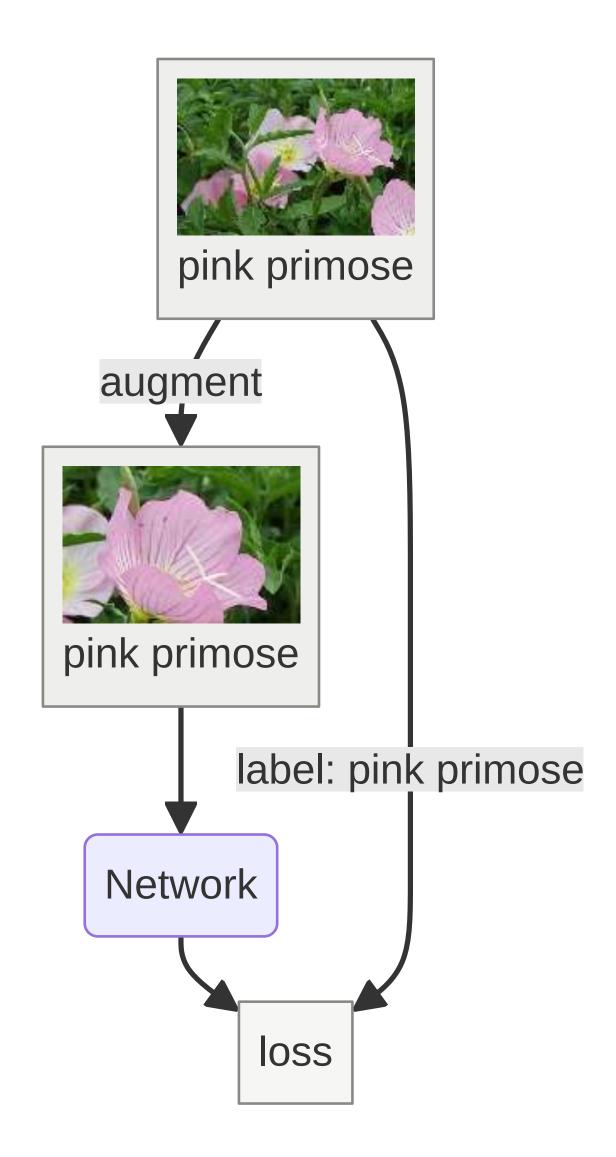
Grey

Flip

Training With Data Augmentation

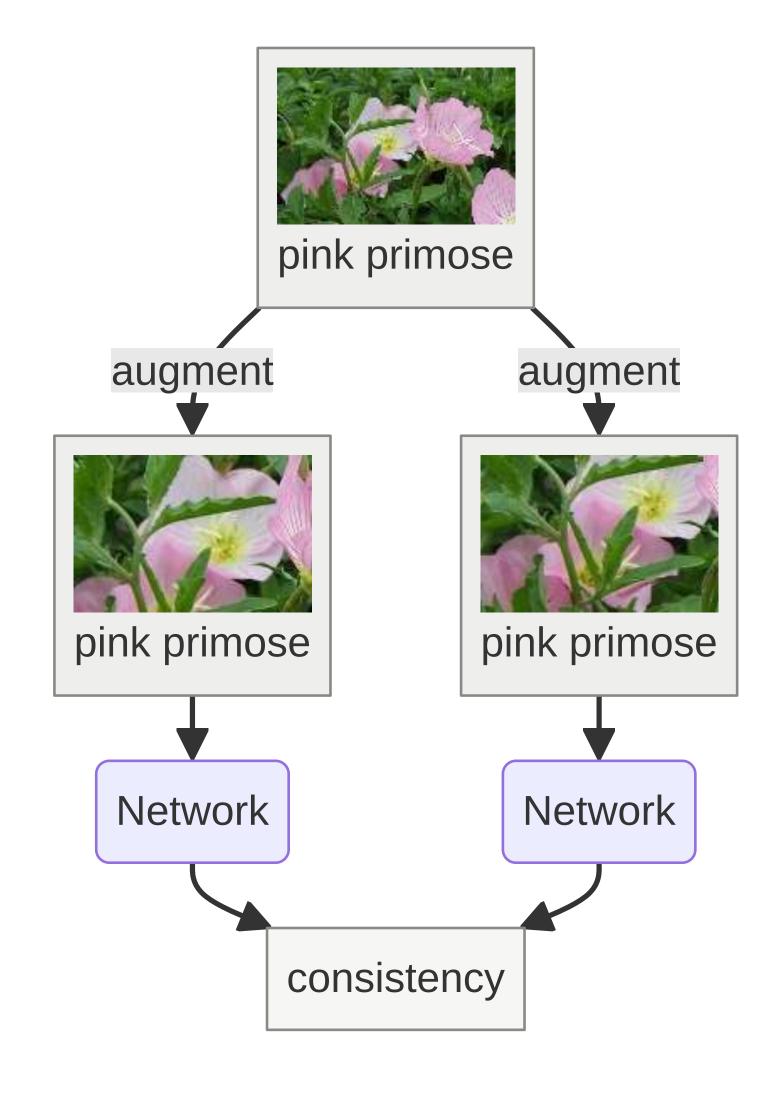
Randomly augment every single iteration

Network never sees exact same data twice



Unsupervised Data Augmentation

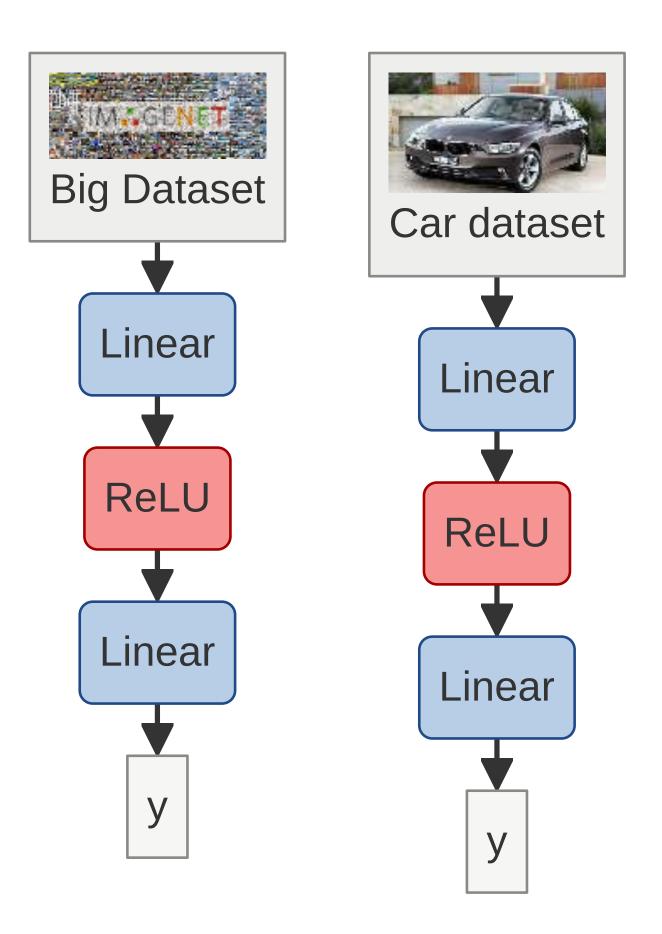
Captures invariances on unseen and unlabeled data¹:



What if we still don't have enough data?

Transfer Learning

- Train model on large dataset (pre-training)
- Continue training on target dataset (fine-tuning)



Preventing Overfitting: Pre-Training

Computer vision

- Supervised (e.g. ImageNet)
- Self-supervised (e.g. MAE)

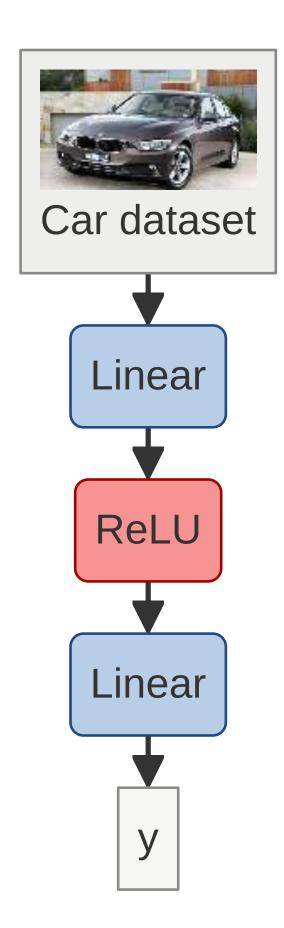
Natural Language Processing

Self-supervised (e.g. Wikipedia)

Pre-training / fine-tuning in practice

Download a pre-trained model

Run a few training iterations on small dataset



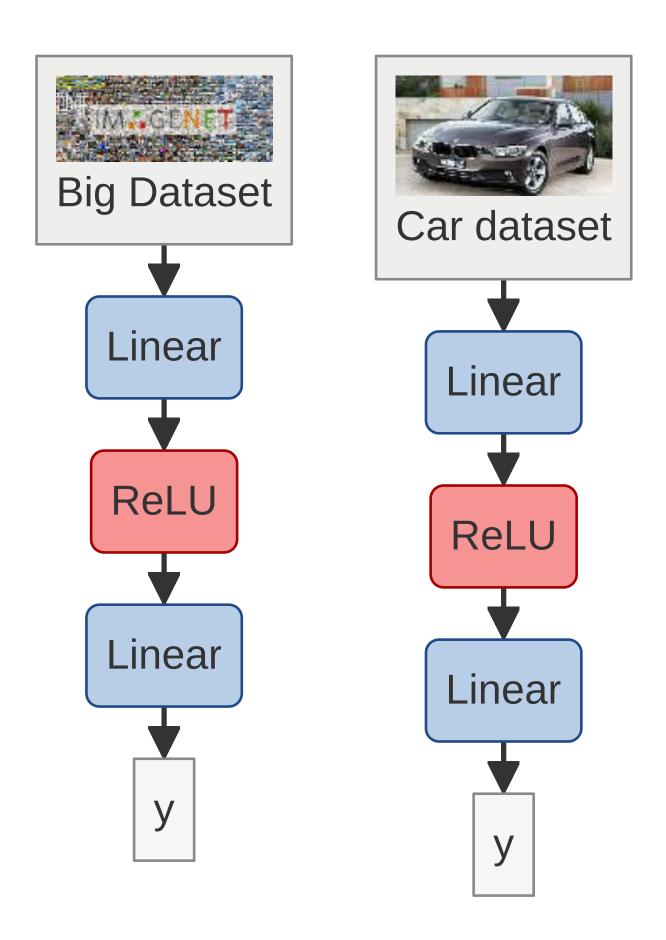
Why Does Transfer Learning Work?

Similar inputs

- e.g. images, text, ...
- Transfer between tasks

Good initialization

- Learned weights are initialized well
- Better init allows for better training



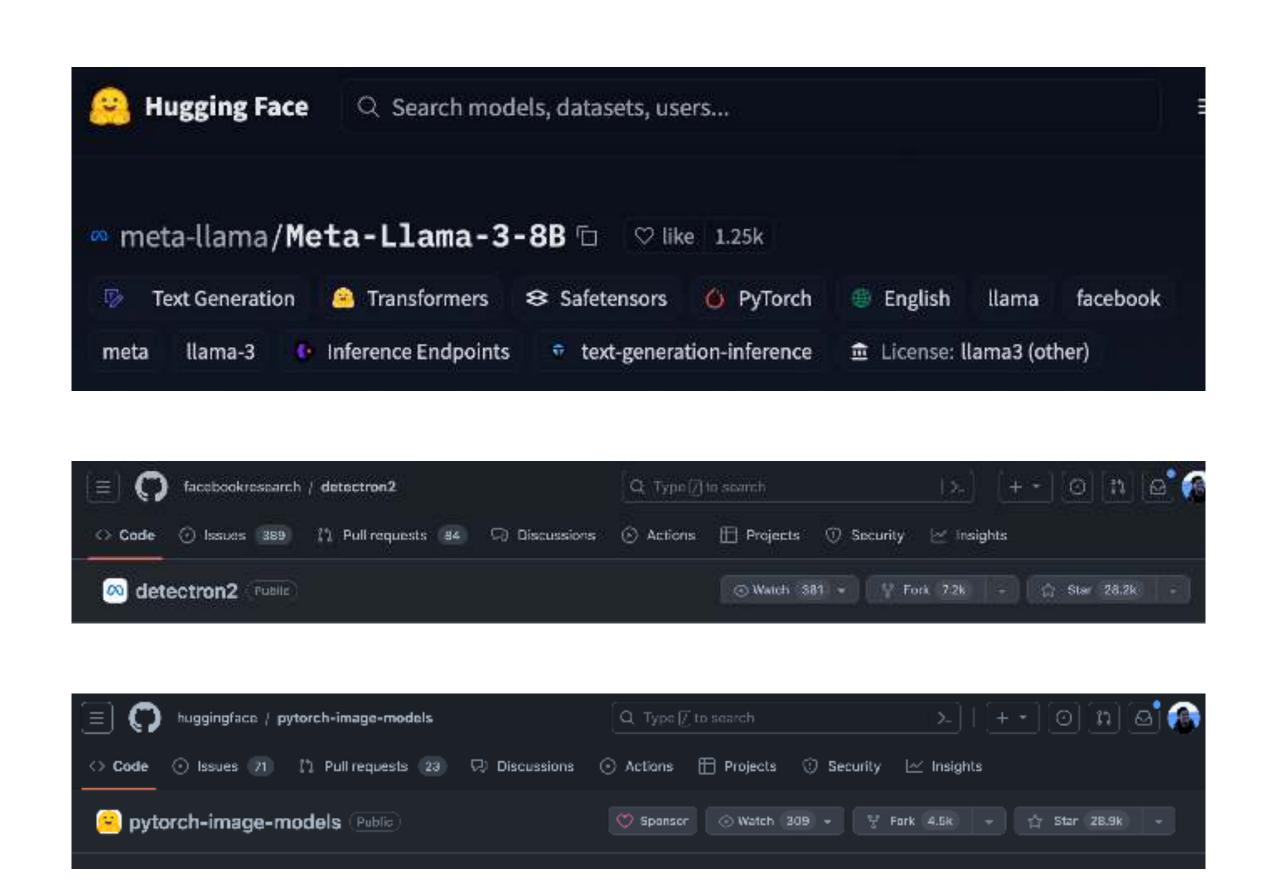
When to Use Transfer Learning?

Whenever possible!

- In early experiments
- Large pre-trained model exists

Where can we find models?

- Github
- Huggingface
- Detectron2

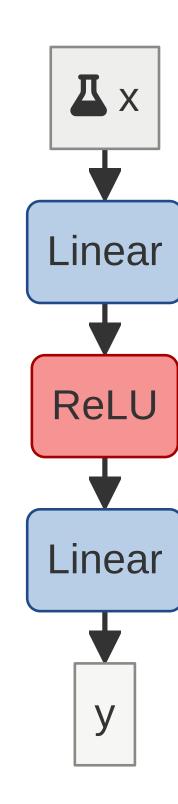


Why Does Our Model Overfit? - Part I

Model exploit patterns that exist in training data

These patterns are not in the validation / test data

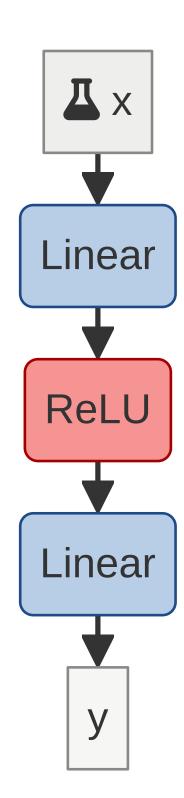
Not all activations overfit



Why Does Our Model Overfit? - Part I

Deeper layers overfit more

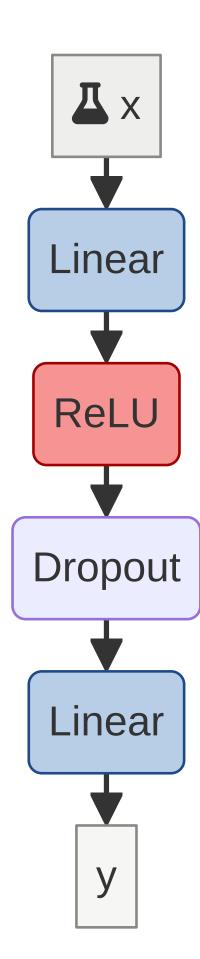
Relies on overfit activations from previous layers



Preventing Overfitting: Dropout

Method: Randomly remove activations

Reduces reliance on specific activations in previous layer



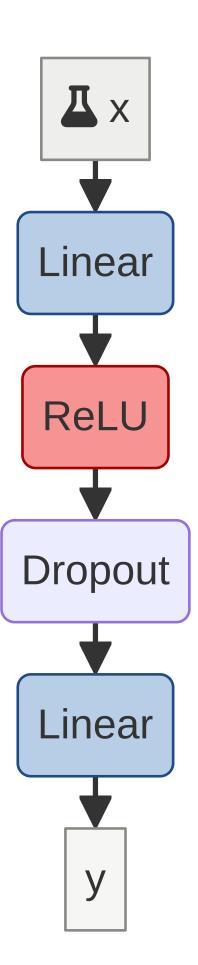
Preventing Overfitting: Dropout

During training

• With probability lpha set activation $a_l(i)$ to zero

During evaluation

- Use all activations but scale by $1-\alpha$



Dropout in Practice

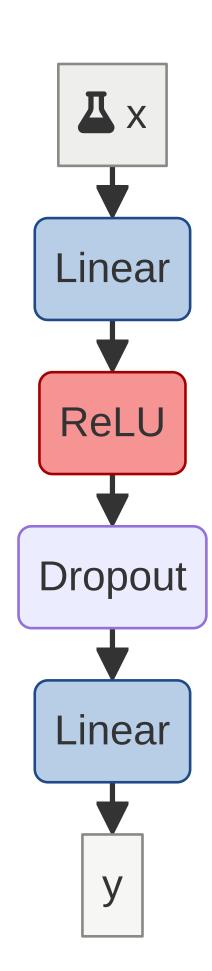
A separate "layer" torch.nn.Dropout

During training

- With probability lpha set activation $a_l(i)$ to zero
- Scale activations by $\frac{1}{1-\alpha}$

During evaluation

- Identity
- Important: do not forget to call model.eval()!

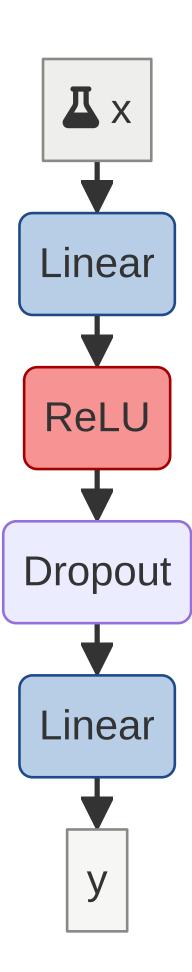


Where to Add Dropout?

Before any large fully connected layer

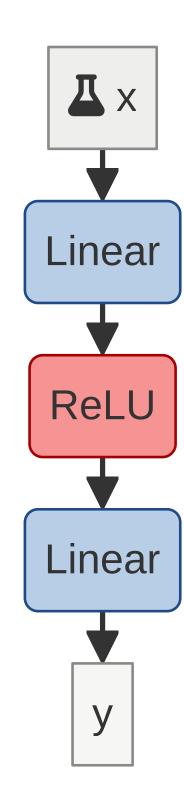
Before some 1x1 convolutions

Not before general convolutions



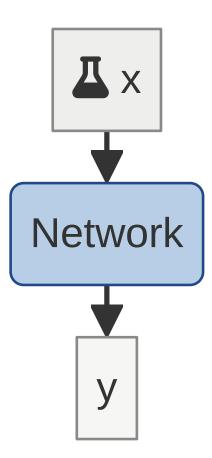
Why Does Our Model Overfit? - Part II

Models becomes too complex and large



Idea 1: Smaller Model

- ✓ Smaller models overfit less
- X Smaller models fit worse
- × Smaller models generalize worse



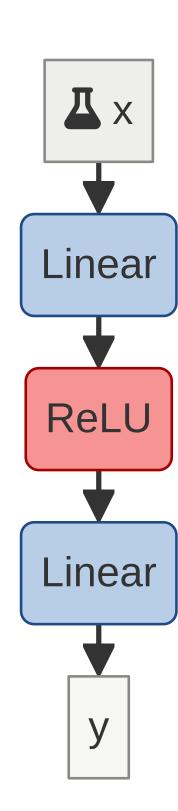
Idea 2: Big Model With Regularization

Weight Decay

- ✓ Keep weights small (L2 norm)
- Keep weight at same magnitude

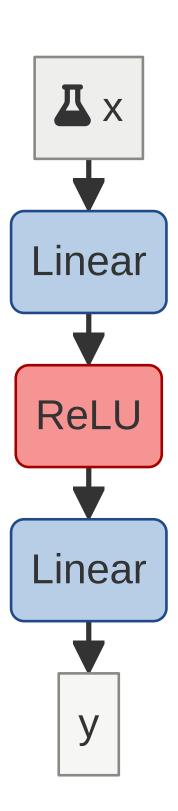
Other reasons to use weight decay

✓ Helps with exploding gradients



Idea 2: Big Model With Regularization

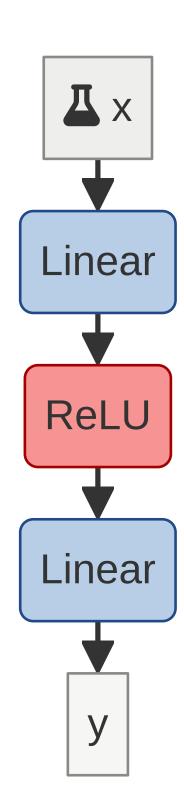
AdamW



How to Use Weight Decay?

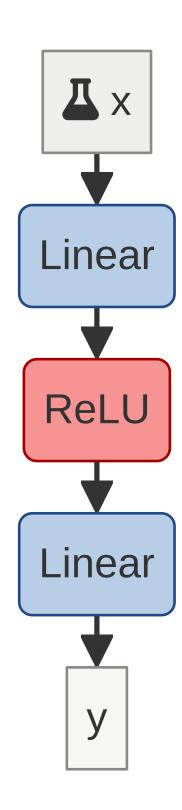
Parameter in optimizer

```
torch.optim.AdamW(lr=lr, weight_decay=1e-4)
torch.optim.SGD(lr=lr, weight_decay=1e-4)
```



Why Does Our Model Overfit? - Part III

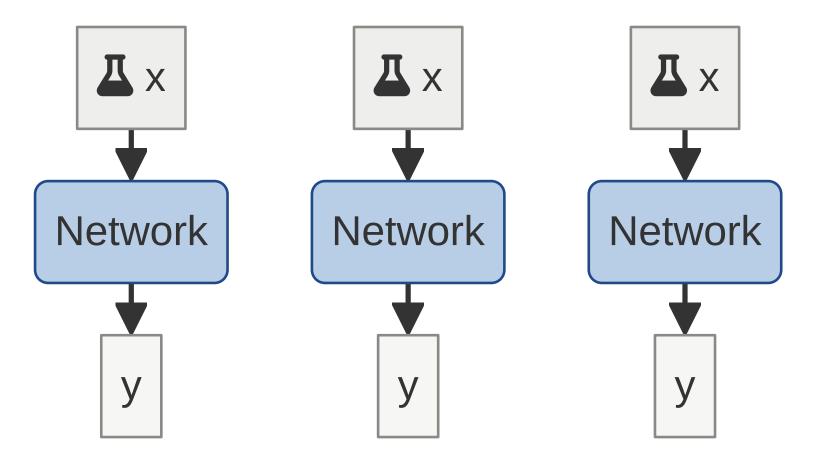
Models are too complex



Preventing Overfitting: Ensembles

Train multiple small models

Average predictions of multiple models



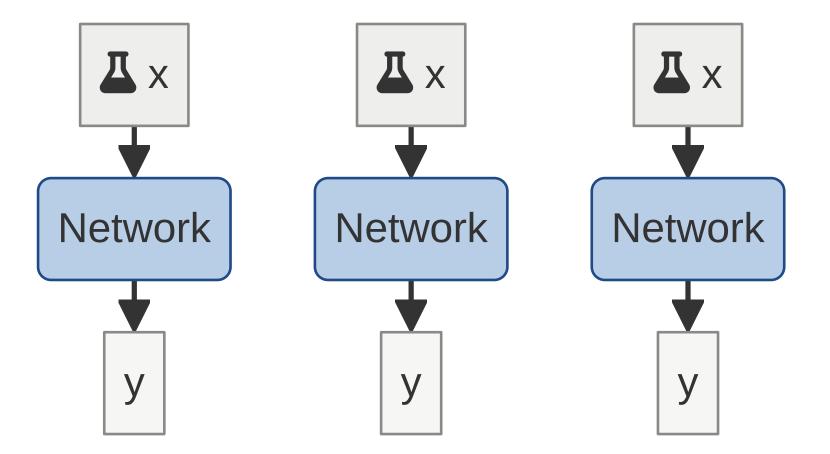
Preventing Overfitting: Ensembles

Pre-deep learning

Use different subsets of training data

Deep learning

- Use different init / data augmentations
- Different local minima



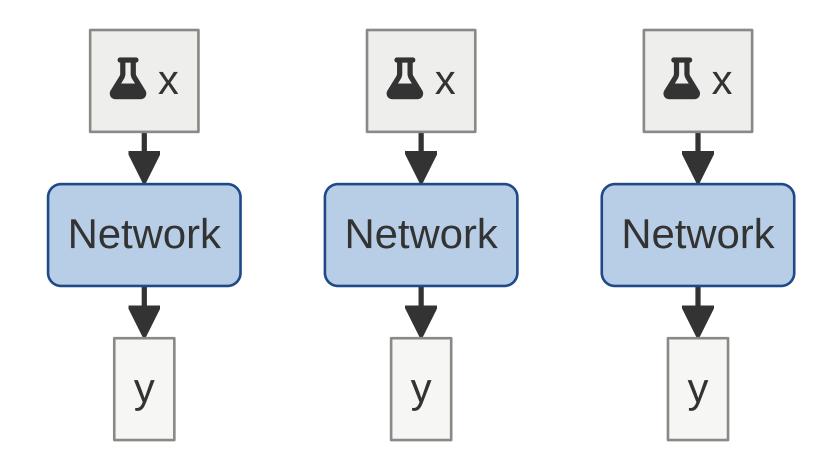
Why Do Ensembles Work?

Fewer parameters / model

Each model overfits in its own way

Usually a 1-3% accuracy boost on most tasks

longer training



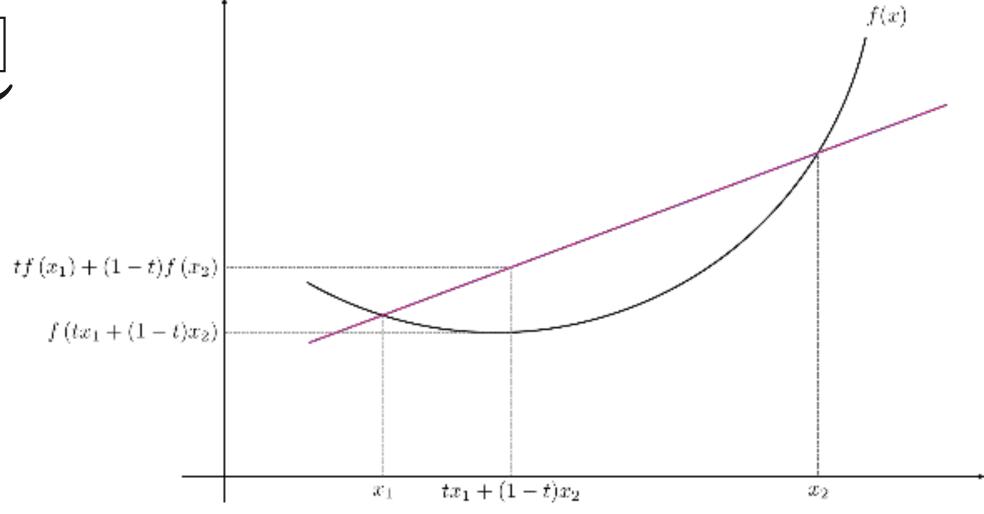
Why Do We Average Predictions?

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})}[l(\frac{1}{M}\sum_{i=1}^{M}f(\mathbf{x}|\theta_i),\mathbf{y})] \leq \frac{1}{M}\sum_{i=1}^{M}\underbrace{\mathbb{E}_{(\mathbf{x},\mathbf{y})}[l(f(\mathbf{x}|\theta_i),\mathbf{y})]}_{\text{loss for model }i}$$

loss for ensemble

for a convex loss function l and M models

follows from Jenson's inequality 1.

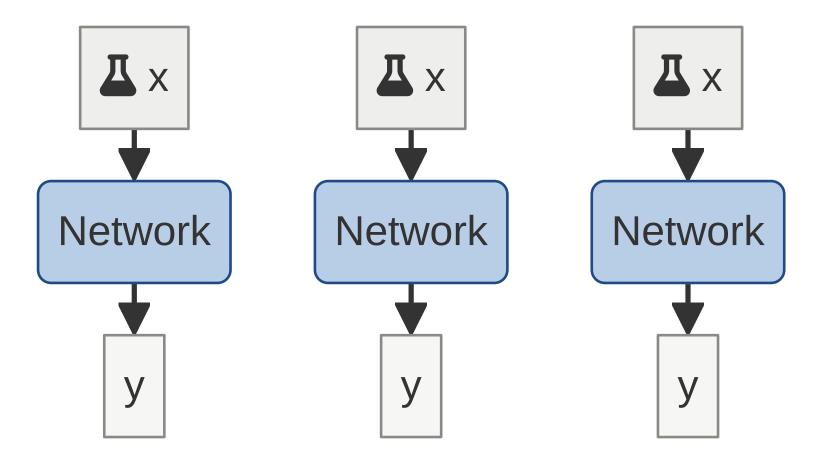


When to Use Ensembles?

If you have the compute power

If you really need the last bit of accuracy

e.g. production, competitions



(Language) Transformers in PyTorch