Generative Models II

Homework 4

Discussion

- Did Claude / Codex zero-shot the homework?
 - What was your prompt?
- How did you get to your solution?
 - Iterative process. How many models did you train in total?
 - Logging / Visualizations
 - Other tips / hints?

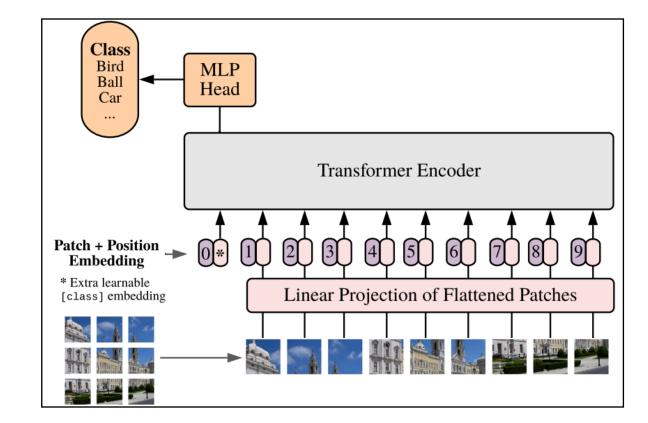
How to train a network?

Training is an iterative process Step 2: Training 5-10% of work Train Step 1: Data curation Design / download model 70-80% of work architecture LX Collect Data Transformer Apply model Look at to real world your data Step 3: Testing 15-20% of work

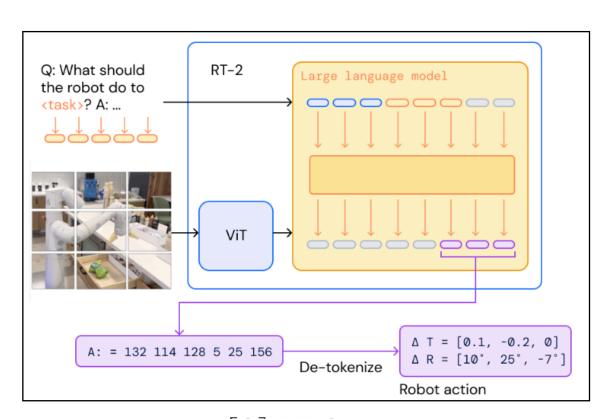
Generative Models

Recap: Discriminative models

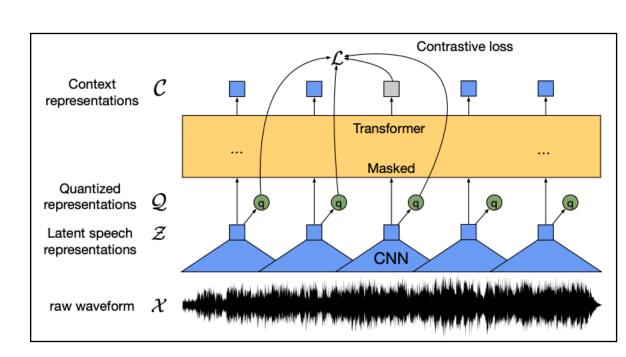
- Discriminative model: P(Y|X)
- Examples:
 - Image/video recognition
 - Speech recognition
 - Control policies
 - Weather prediction



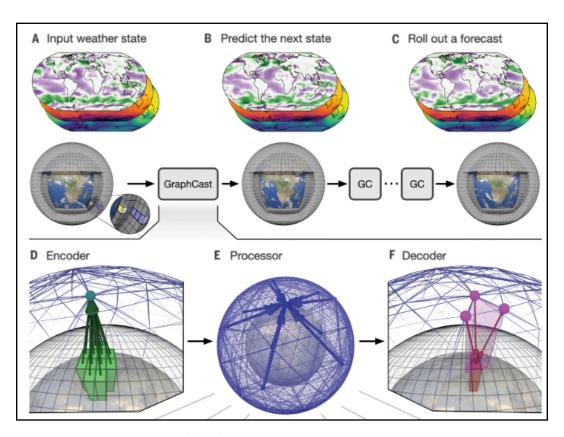
[1] Vision Transformer



[3] RT-2



[2] Wave2vec 2.0



[4] GraphCast

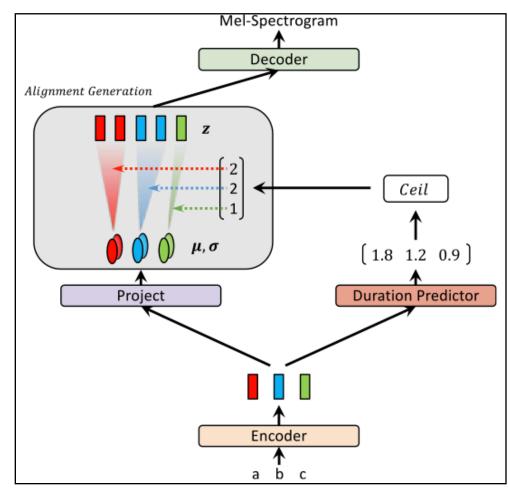
•

- [1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020.
- [2] Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations." Advances in neural information processing systems 33 (2020): 12449-12460.
- [3] Brohan, Anthony, et al. "Rt-2: Vision-language-action models transfer web knowledge to robotic control." arXiv preprint arXiv:2307.15818 (2023).
- [4] Remi Lam et al., Learning skillful medium-range global weather forecasting. Science 382, 1416-1421 (2023).

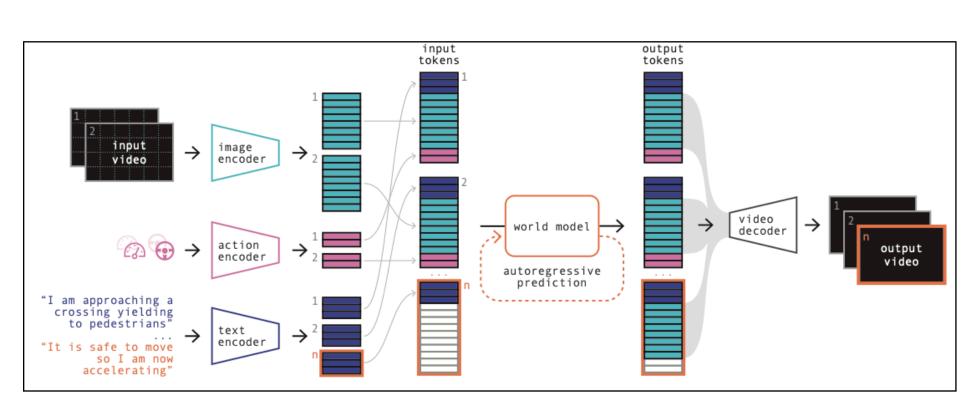
Recap: Generative models

- Generative model: P(X)
- Examples:
 - Image/video generation
 - Speech synthesis
 - Physics simulation / world modeling
 - Weather simulation (gaming)

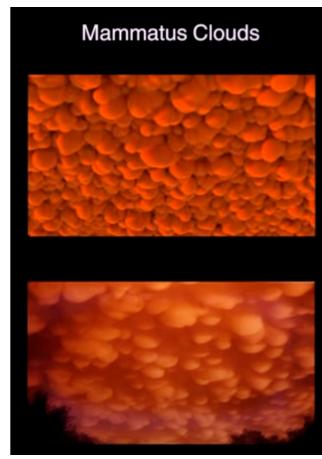
[1] Sora



[2] Glow-TTS



[3] GAIA-1



[4] Weatherscapes

^[1] Brook, Tim, et al. "Video generation models as world simulators" OpenAI Blog (2024)

^[2] Kim, Jaehyeon, et al. "Glow-tts: A generative flow for text-to-speech via monotonic alignment search." Advances in Neural Information Processing Systems 33 (2020): 8067-8077...

^[3] Hu, Anthony, et al. "Gaia-1: A generative world model for autonomous driving." arXiv preprint arXiv:2309.17080 (2023).

^[4]J. A. Amador Herrera, et al. "Weatherscapes: Nowcasting Heat Transfer and Water Continuity." ACM Transactions on Graphics (SIGGRAPH Asia 2021), Vol. 40, No. 6, Article 204...

Recap: Generative models

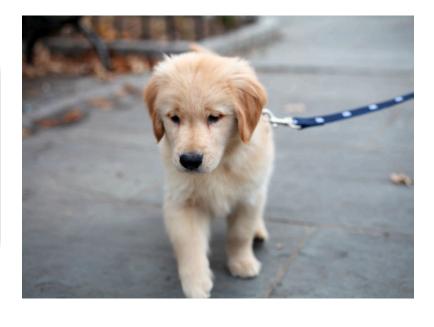
Two kinds of models

Sampling based $x \sim P(X)$

- Sample $z \sim P(Z)$
- Learn transformation
 - P(x|z) or $f:z \to x$

7

Deep Network



Density estimation based P(X)

- Learn special form of P(X)
- Model specific sampling / generation

Deep Network

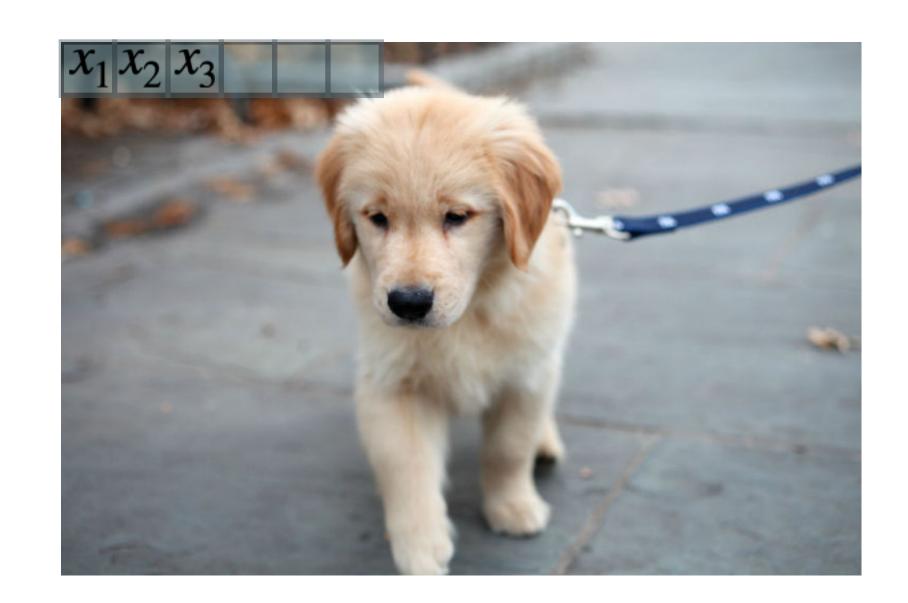
P(X)

Recap: Auto-regressive models

$$P(x) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)P(x_4 | x_1...x_3)...$$

•
$$P(x_i | x_1...x_{i-1}) = \text{softmax}(f(x_1...x_{i-1}))$$

- Basis of most LLM models
- Easy estimation of P(x)
- Easy sampling $x_1 \sim P(X_1); x_2 \sim P(X_2 \mid x_1)$
 - Slow sampling



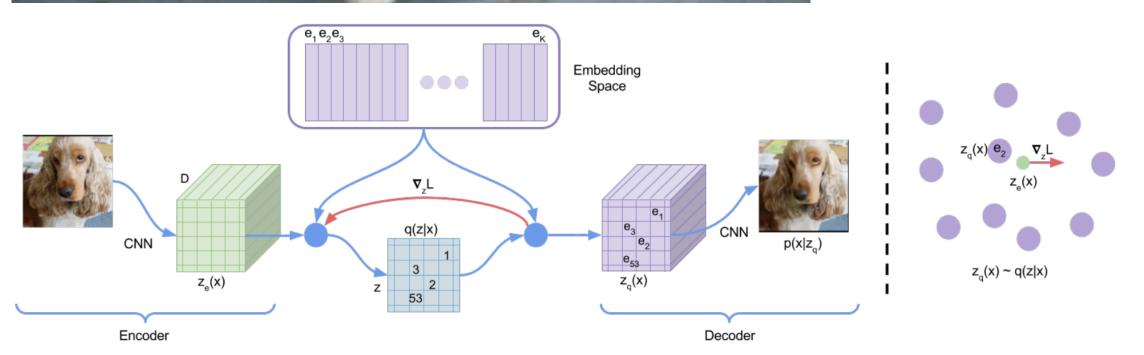
Recap: Vector Quantization

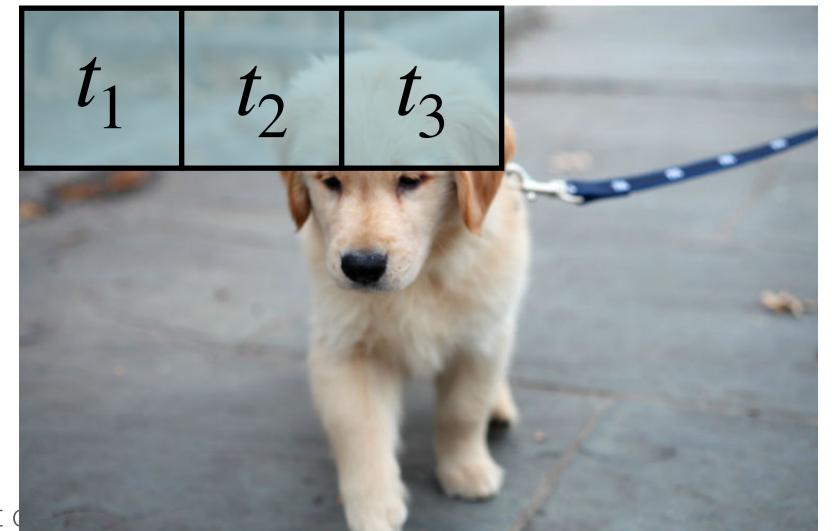
- Variational Auto-Encoder
 - Decoder $P_D(x \mid z)$ Encoder $Q(z \mid x)$
- Vector Quantizer

$$q(z) = \arg\min_{e_k} ||z - e_k||$$

- Learn codebook $\{e_1...e_K\}$
- What is $\nabla q(z)$?
- [1] Neural Discrete Representation Learning. Aaron van den Oord, et al. 2017
- [2] Language models are unsupervised multitask learners. Alec Radford, et al. 2019
- [3] Simulating 500 million years of evolution with a language model. Thomas Hayes, et a

Vanilla autoregressive model



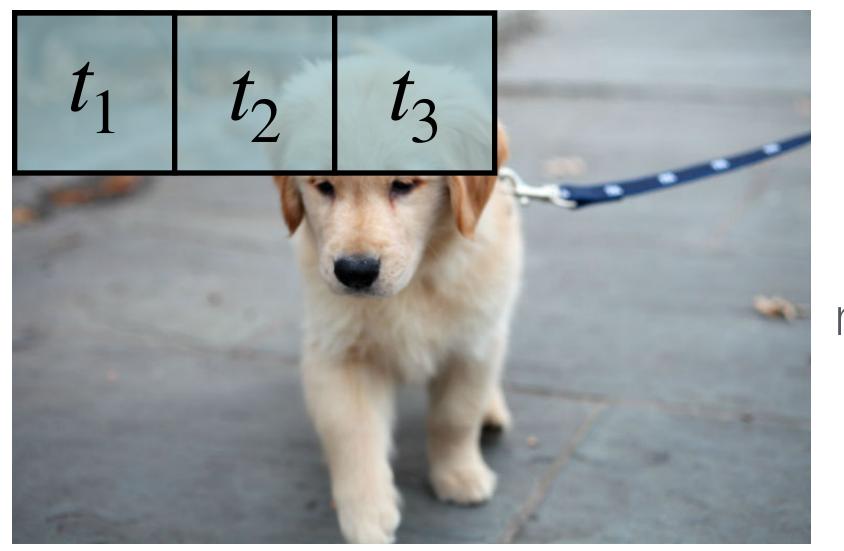


Tokenized autoregressive model

Recap: Tokenization

- Image [1]
 - Convert patch p_i of pixels into token $t_i \in \{1, ..., K\}$
- Text [2]
 - Convert set of characters into token
- Protein-sequence [3]
 - Convert local protein structure to token

Vanilla autoregressive model



Tokenized autoregressive model

^[1] Neural Discrete Representation Learning. Aaron van den Oord, et al. 2017

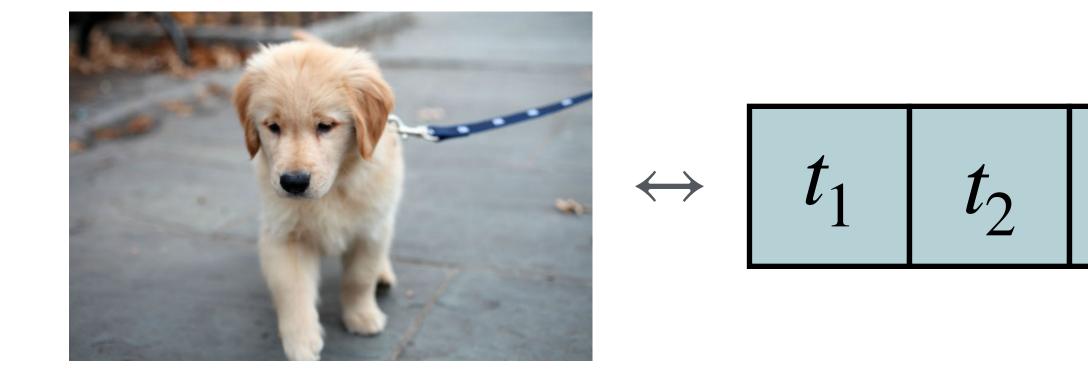
^[2] Language models are unsupervised multitask learners. Alec Radford, et al. 2019

^[3] Simulating 500 million years of evolution with a language model. Thomas Hayes, et al. 2024

Tokenization

A different view

- Convert
 - images ↔ streams of tokens
 - text ↔ streams of tokens
 - More in next section



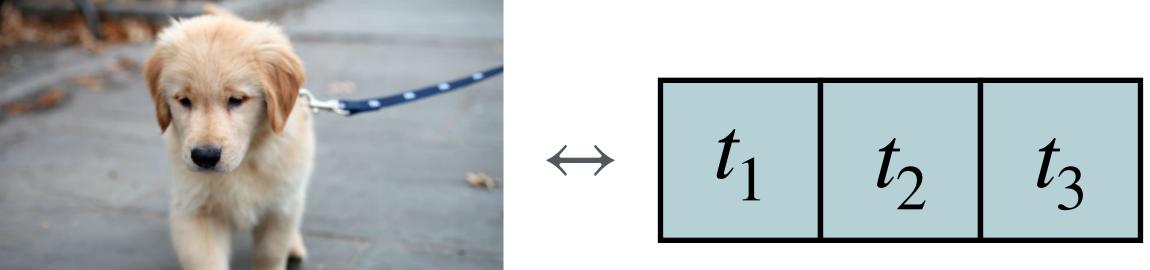
A cute little dog fully focused on walking

$$\leftrightarrow \begin{vmatrix} \hat{t}_1 & \hat{t}_2 & \hat{t}_3 \end{vmatrix}$$

DAT T-F.

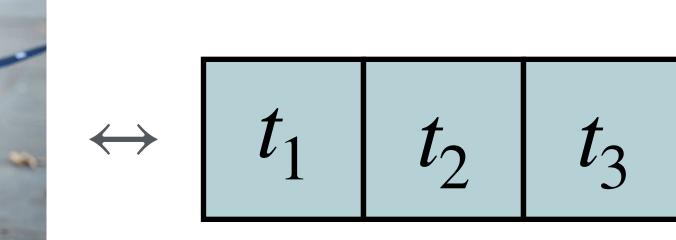
•
$$P(\mathbf{t} | \hat{\mathbf{t}}) = P(t_1 | \hat{\mathbf{t}})P(t_2 | t_1, \hat{\mathbf{t}})...P(t_L | t_1, ..., t_{L-1}, \hat{\mathbf{t}})$$

 Q: What would we need to get this to work?



A cute little dog fully focused on walking

- Let's learn a generative model over text and image tokens
 - $P(\mathbf{t} | \hat{\mathbf{t}}) = P(t_1 | \hat{\mathbf{t}})P(t_2 | t_1, \hat{\mathbf{t}})...P(t_L | t_1, ..., t_{L-1}, \hat{\mathbf{t}})$
- Where do we get image-text data from?
- What architecture do we use?



A cute little dog fully focused on walking

$$\leftrightarrow \hat{t}_1 \hat{t}_2 \hat{t}_3$$

Dataset

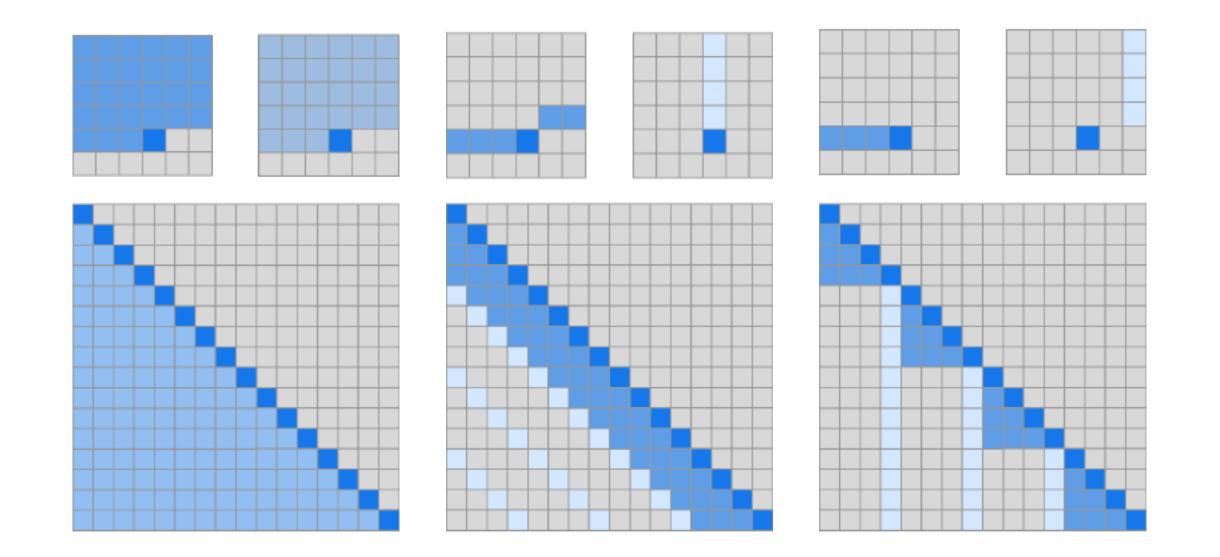
- Image captioning dataset
 - Conceptual Captions [1]
 - 3.3 million text-image
 - OpenAl Internal data (the internet)
 - 250 million text-images pairs
 - YFCC100M [2]
 - Lots of cleanup

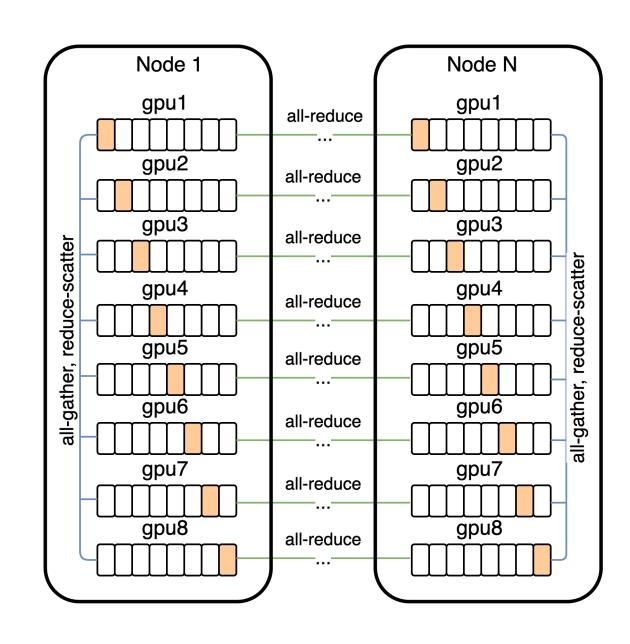
IMG_9793: Streetcar (Toronto Transit) by Andy Nystrom

Celebrating our 6th wedding anniversary in Villa Mary by Rita & Tomek

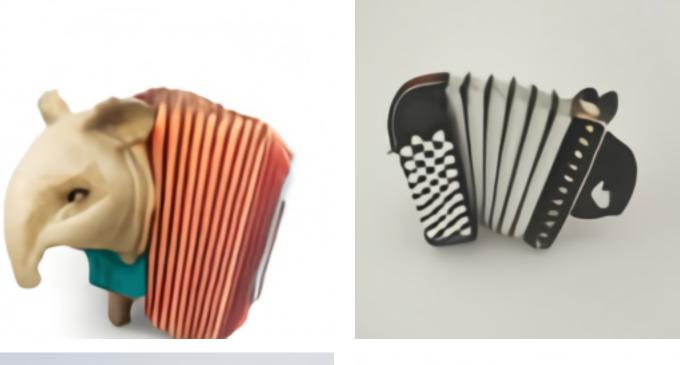
Architecture

- Sparse transformer [1]
- Mixed-precision training
- Sharded Multi-GPU training
 - Pre-cursor to FSDP





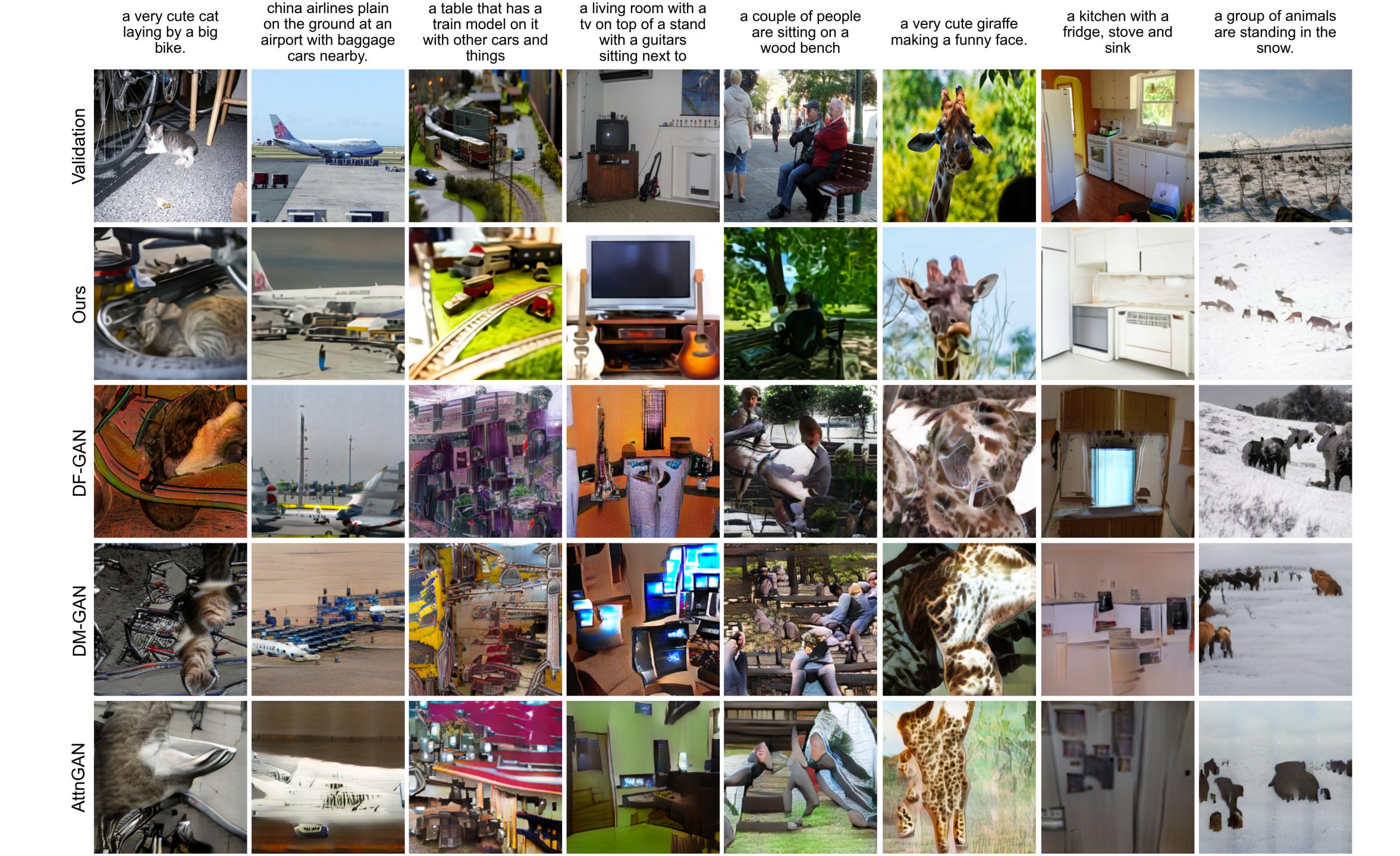
Results



a tapir made of accordion. a tapir with the texture of an accordion.

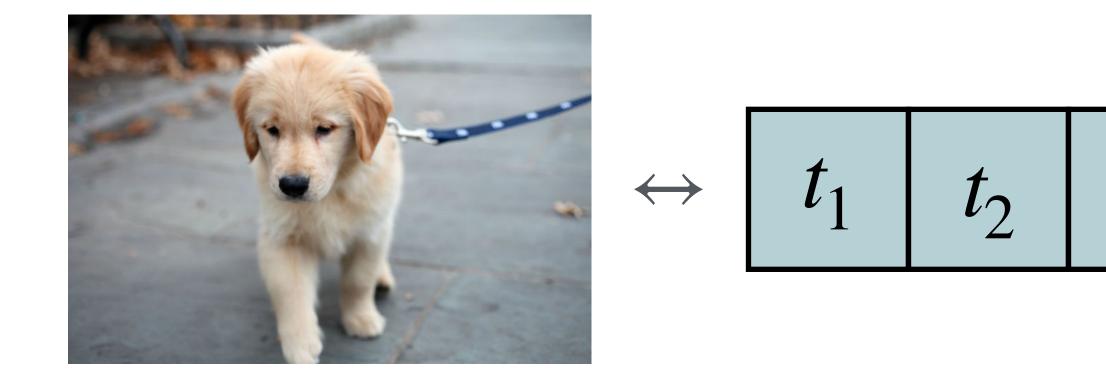
an illustration of a baby hedgehog in a christmas sweater walking a dog

a neon sign that reads "backprop". a neon sign that reads "backprop". backprop neon sign



Lessons learned

- Data is king
- Scaling matters
- Models can be simple

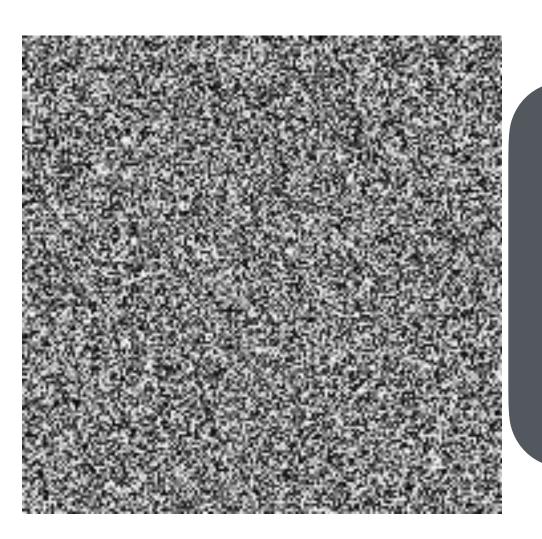


A cute little dog fully focused on walking \leftrightarrow \hat{t}_1 \hat{t}_2 \hat{t}_3

Diffusion

Main idea

- Learn to transform random noise to images
- Why?



Deep Net

 x_0

Main idea

- Learn to transform random noise to images
 - Random noise: Simple distribution, easy to sample from
 - Images: Complex distribution

Simple Distribution

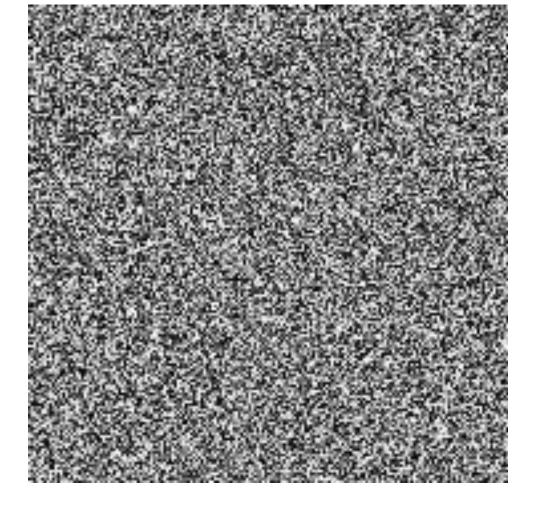
Deep Net

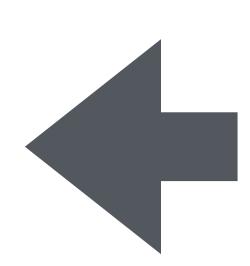
Complex Distribution

 x_0

 Can we build a model from real images to noise?

Simple Distribution

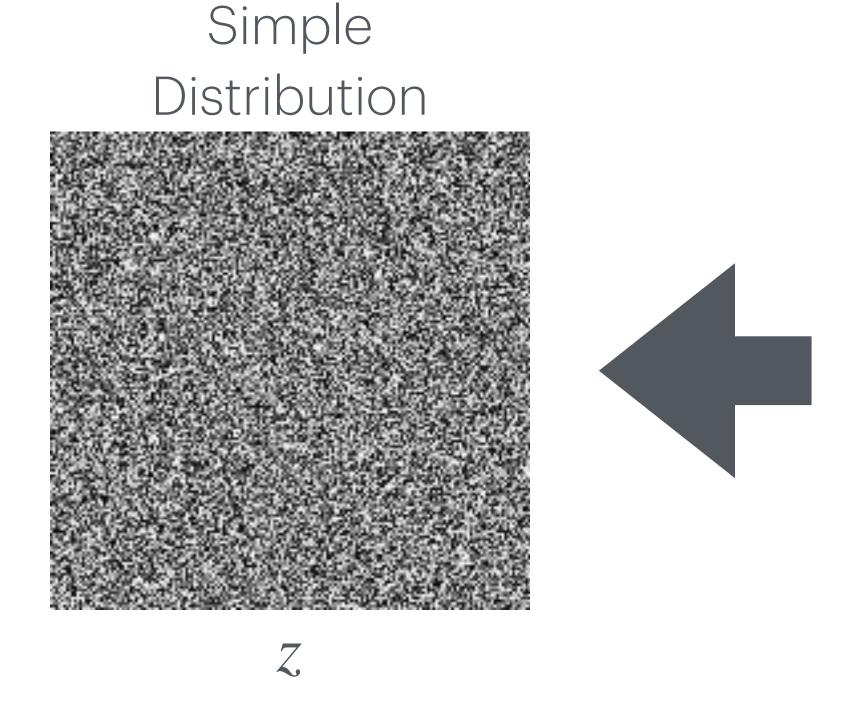




Complex Distribution

 x_0

 Can we build a model from real images to noise?

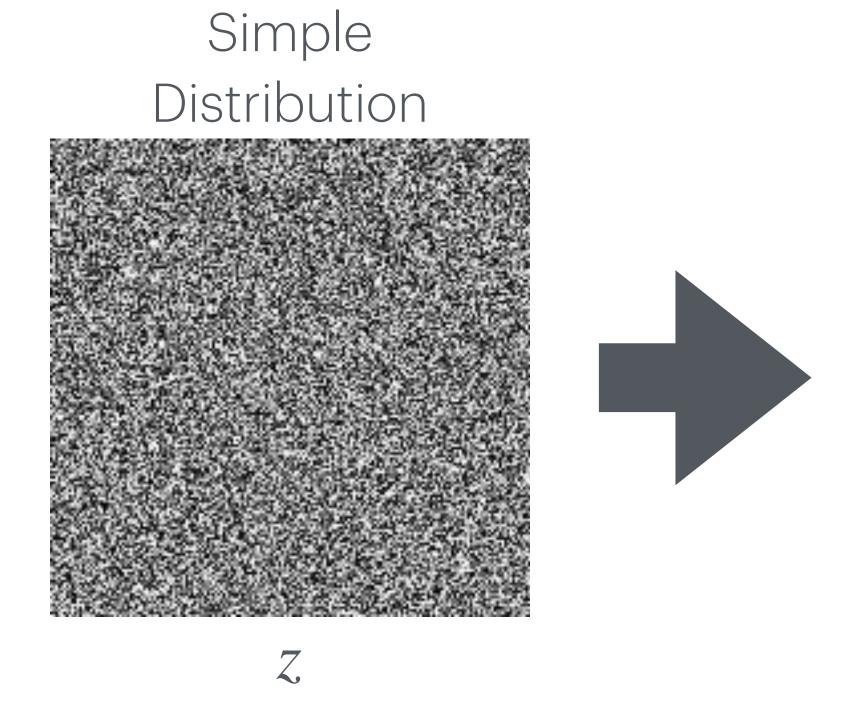


Complex Distribution

 x_0

def f(x):
 return torch.randn(x.shape)

Lets revert this



Complex Distribution

 x_0

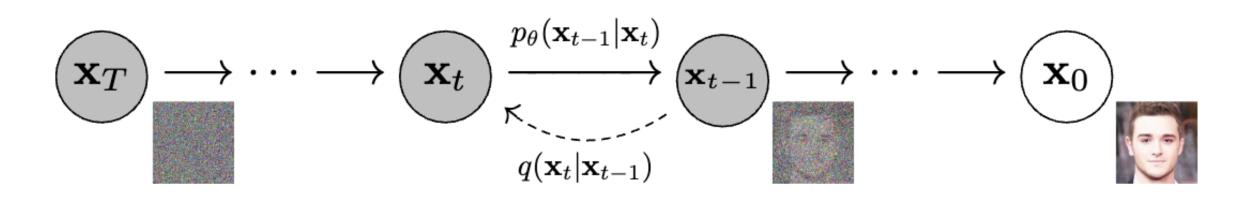
def f(x):
 return torch.randn(x.shape)

Forward process

- Make an image noisy
 - Start with an image x_0
 - Add noise $q(x_t | x_{t-1}) = \mathcal{N}(\sqrt{1 \beta_t} x_t, \beta_t I)$
 - β_t increases linearly with t

$$q(x_t|x_0) = \int_{i=1}^t q(x_i|x_{i-1})dx_{1...t-1}$$

$$= \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)I)$$
where $\bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$



Reverse process

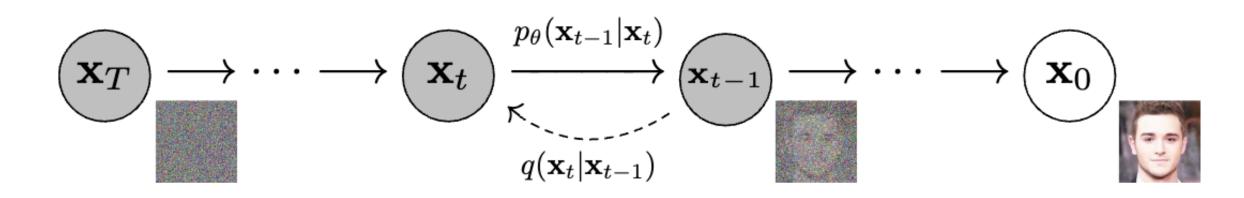
• Start
$$P(x_T) = \mathcal{N}(0,I)$$

• Denoise
$$P(x_{t-1} | x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

Reverse process

$$P(x_{0...T}) = P(x_T) \prod_{t=1}^{I} P(x_{t-1} | x_t)$$

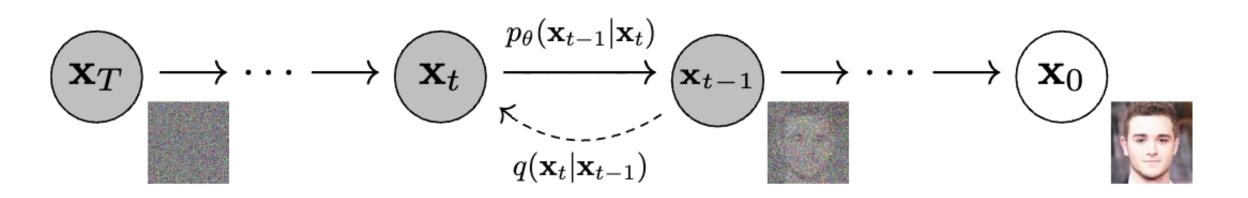
$$P(x_0) = \int P(x_{0...T}) dx_{1...T}$$



Maximize Evidence lower bound (ELBO)

$$\log P(x_0) \ge E_q \left[\log \frac{P(x_{0...T})}{q(x_{1...T}|x_0)} \right]$$

- (Lot's of math later)
- Relatively simply training and sampling algorithms
 - $\epsilon(x_t, t)$ is a noise-prediction network



Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

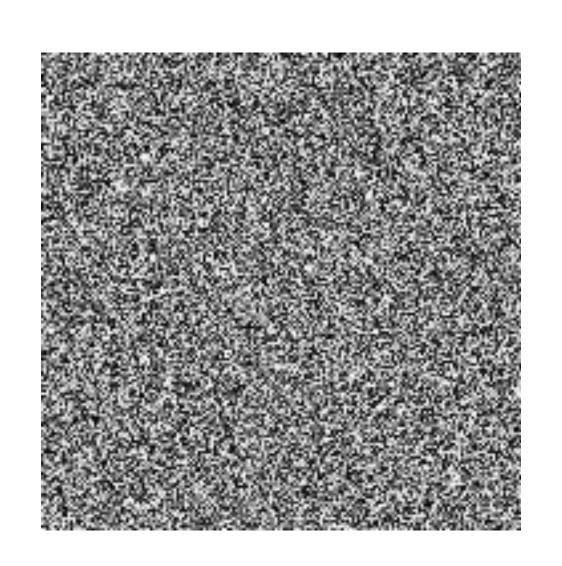
Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

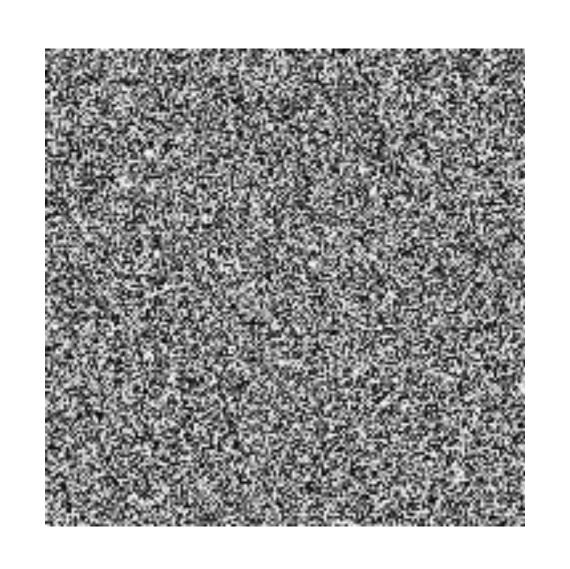
- 5: end for
- 6: return x_0

Diffusion Model



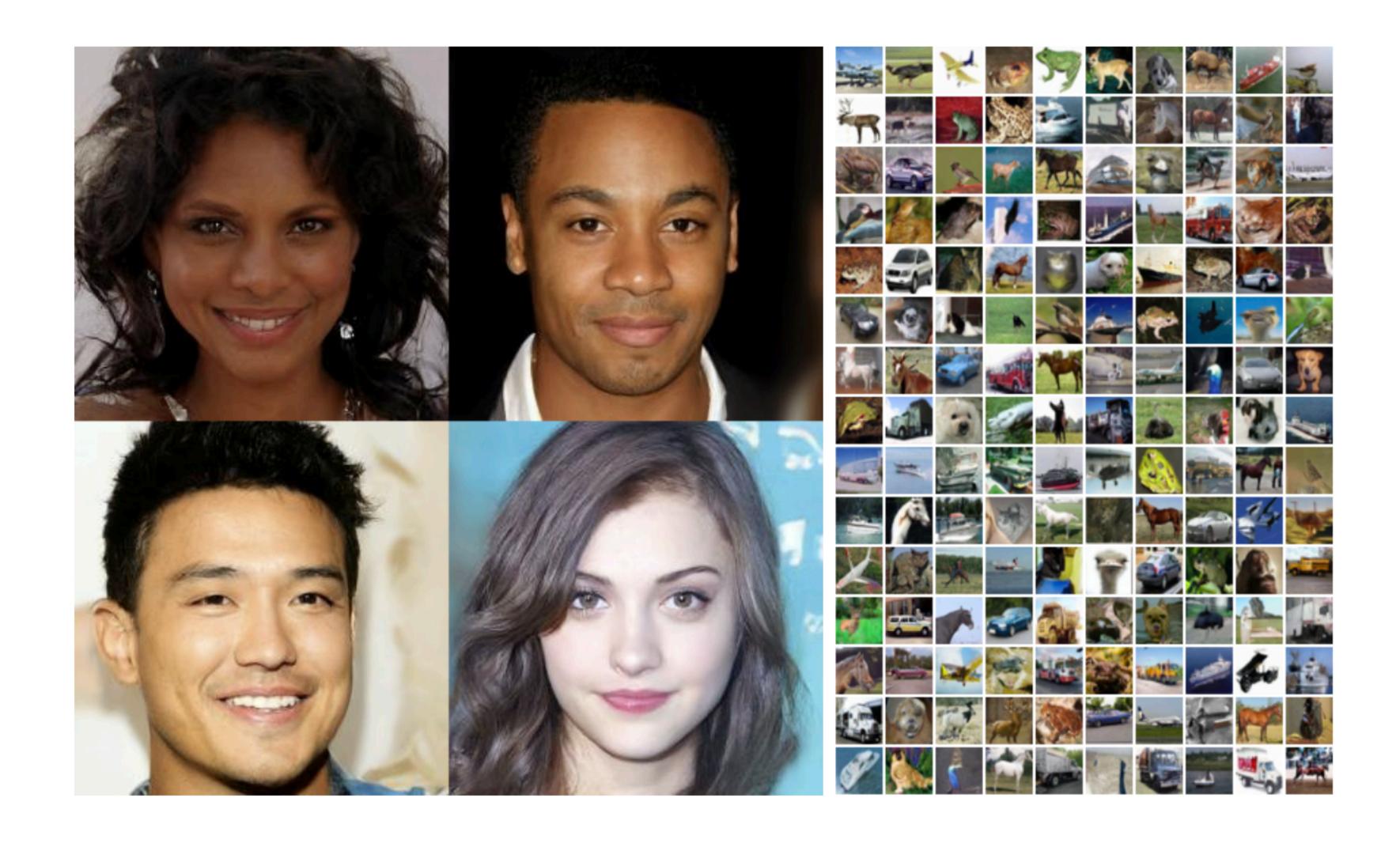
Diffusion Model

Nowadays



Transformer (DiT)

Diffusion - Results

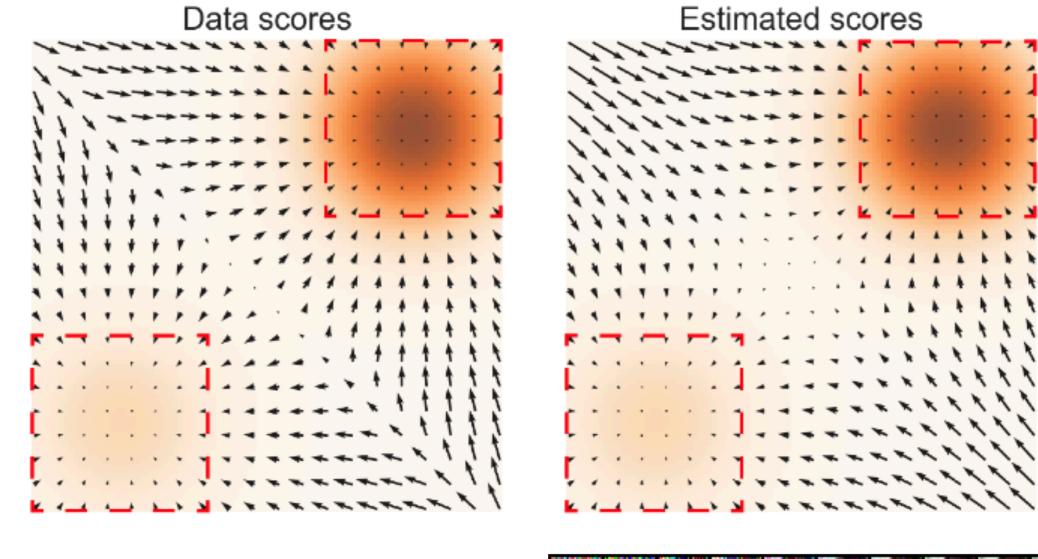


Score-based models

- $P(x) / \log P(x)$
 - is hard to learn
- $\nabla \log P(x)$ (score function)
 - is easier to learn/estimate

$$E_{x \sim P} \left[\left| s(x) - \nabla P(x) \right|^2 \right] =$$

•
$$E_{x\sim P}\left[\operatorname{tr}(\nabla_x s(x)) + \frac{1}{2} |s(x)|^2\right] + \operatorname{const}$$



Algorithm 1 Annealed Langevin dynamics.

```
Require: \{\sigma_i\}_{i=1}^L, \epsilon, T.

1: Initialize \tilde{\mathbf{x}}_0

2: for i \leftarrow 1 to L do

3: \alpha_i \leftarrow \epsilon \cdot \sigma_i^2/\sigma_L^2 \quad \triangleright \alpha_i is the step size.

4: for t \leftarrow 1 to T do

5: Draw \mathbf{z}_t \sim \mathcal{N}(0, I)

6: \tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t

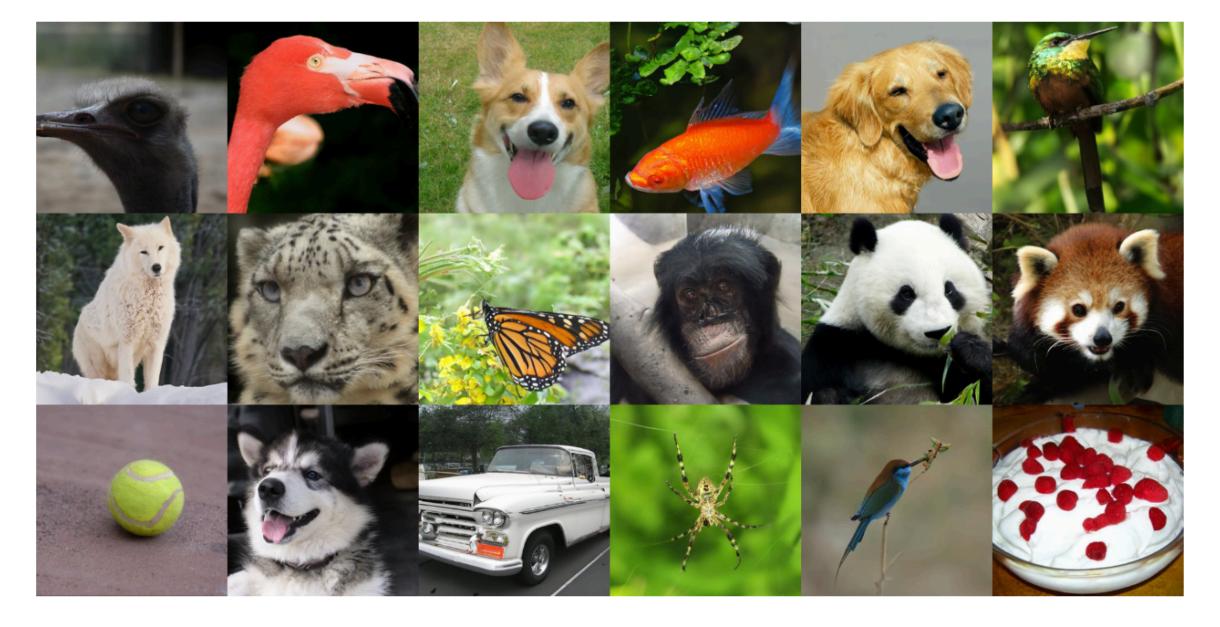
7: end for

8: \tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T

9: end for return \tilde{\mathbf{x}}_T
```

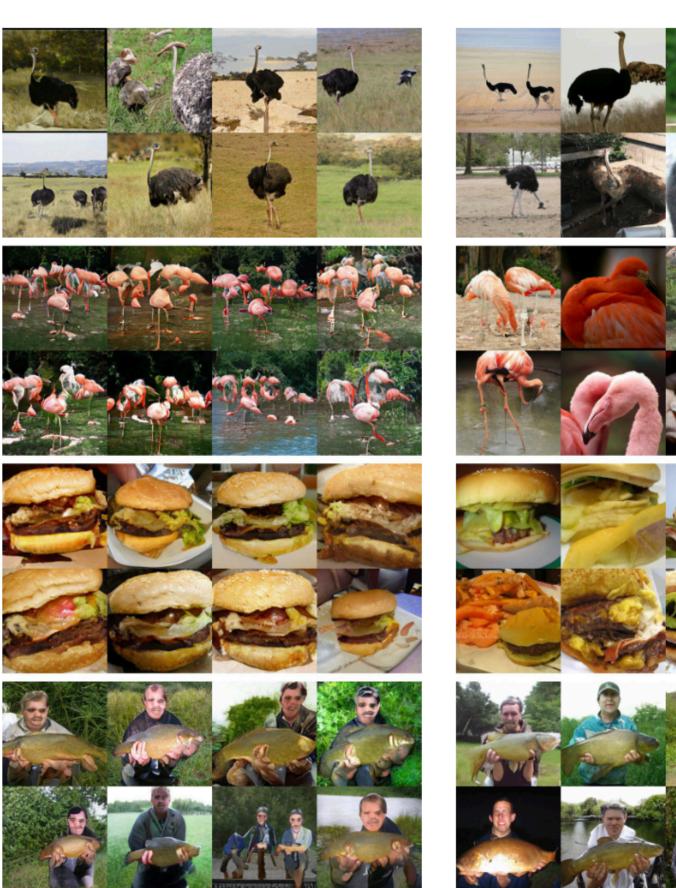

Guided Diffusion

- Learn variance $\Sigma(x_t)$
- Better architecture
 - Deeper, more attention heads, attention on multiple blocks, ...
- Classifier guidance (conditioning)



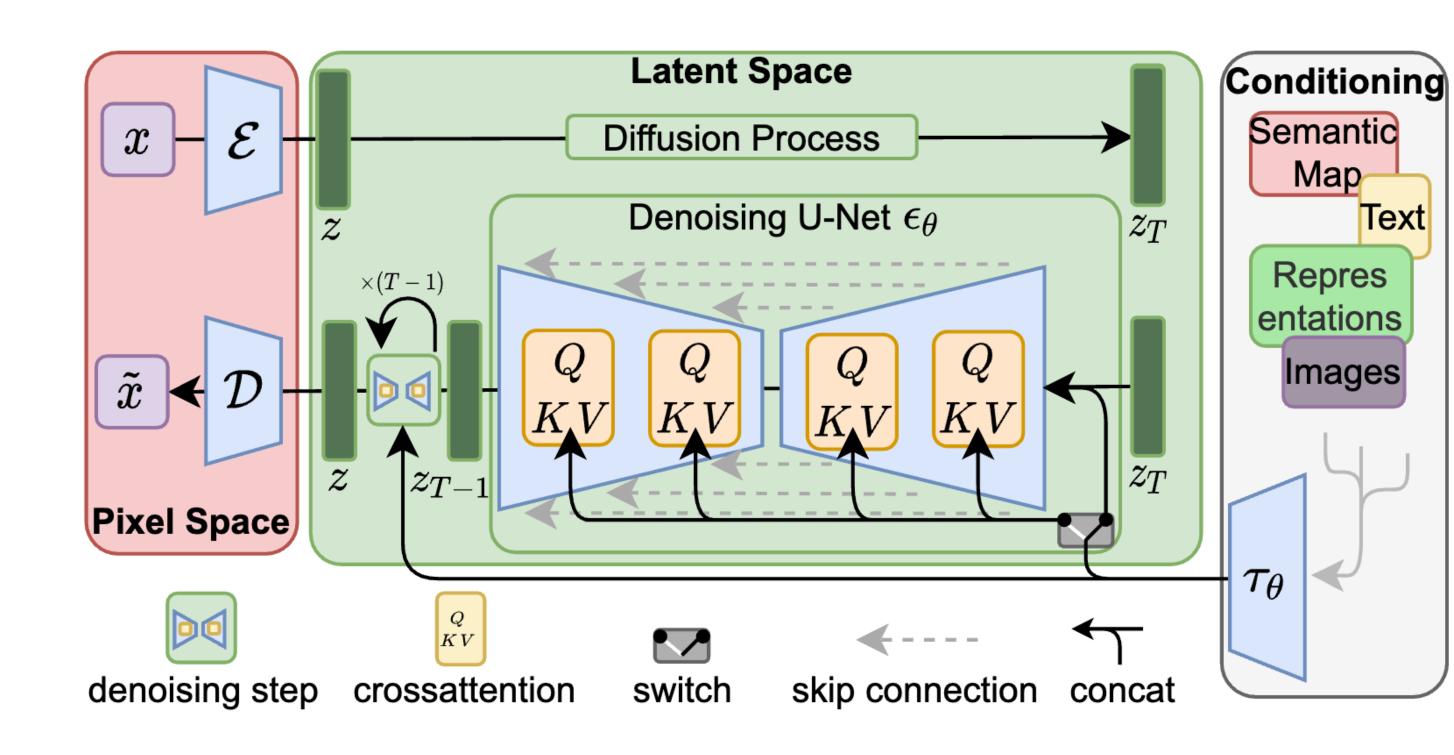
Diffusion

- Very good image quality
- Not easily controllable
- Computationally quite expensive
 - Multiple sampling steps
 - Fairly high resolution inputs and outputs required (original image size)

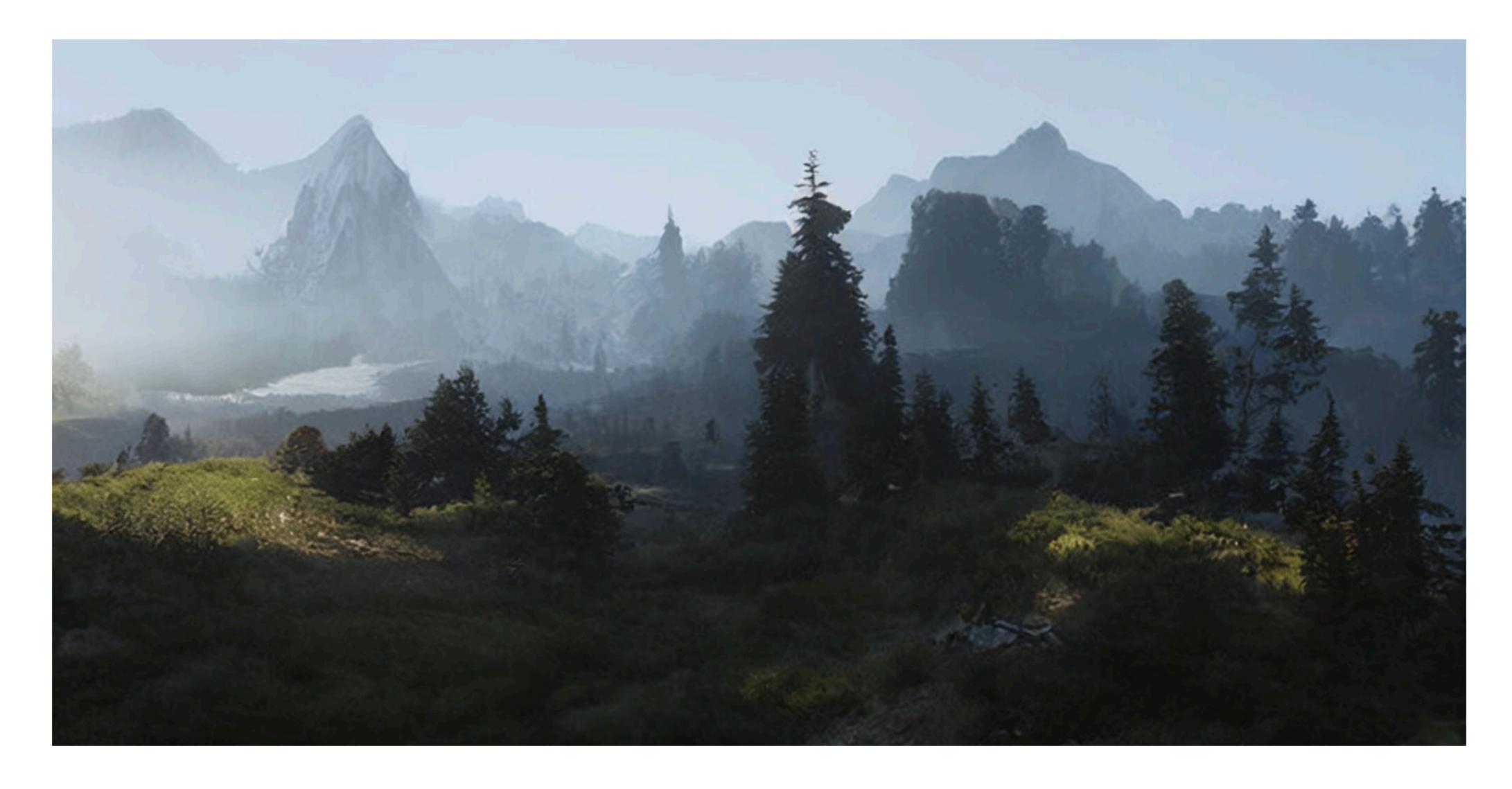


Latent Diffusion

- Auto-encoder + Diffusion
 - Similar to VQVAE + Auto-regressive
- Speeds up training and generation
 - Lower resolution diffusion
 - Auto-encoders are fast
- Higher resolution outputs



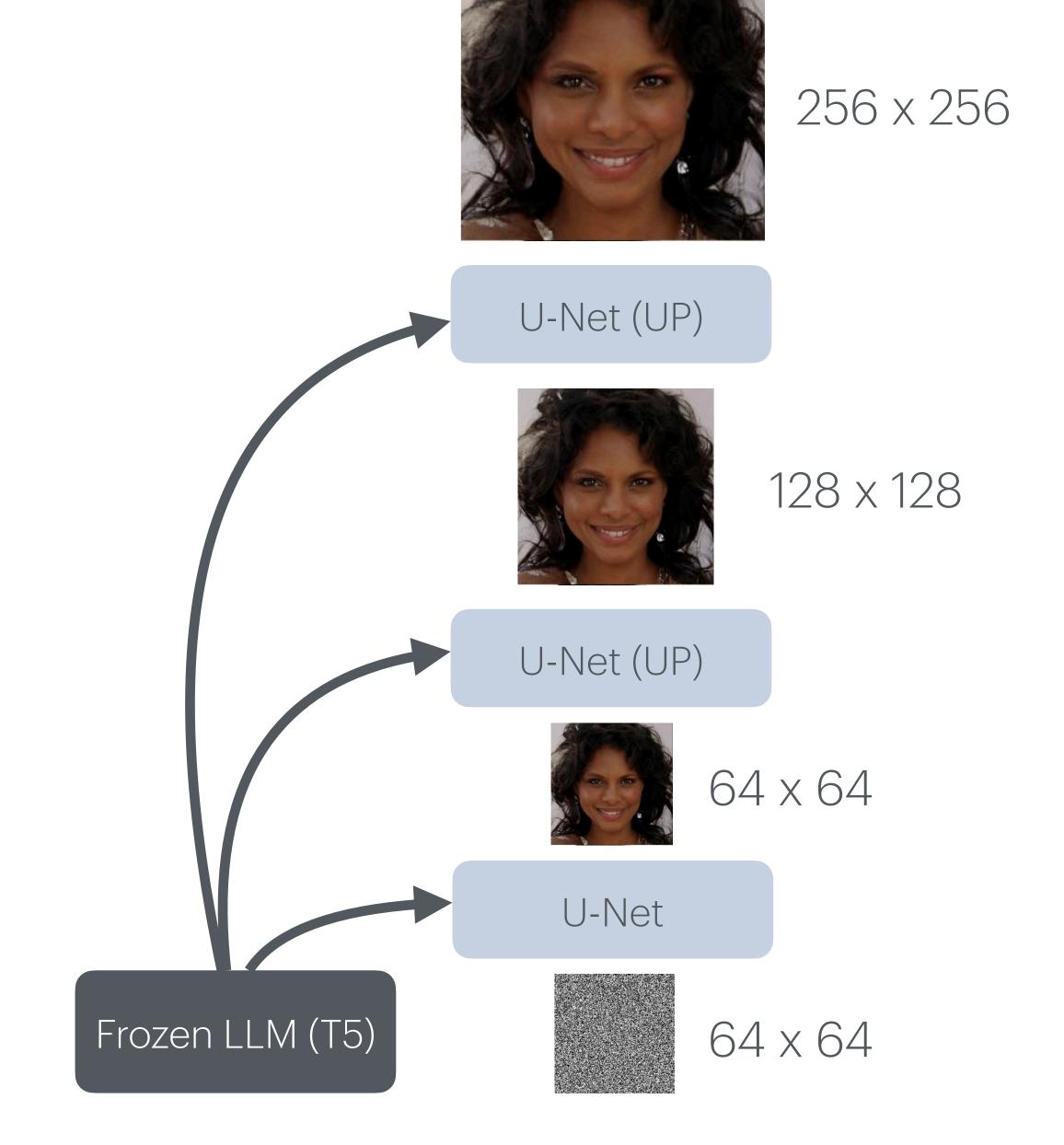
Latent Diffusion



High-Resolution Image Synthesis with Latent Diffusion Models. Robin Rombach,, et al. 2021.

Imagen

- First really large scale diffusion model
 - 800M+ image-text pairs
- Frozen LLM
- Lower resolution diffusion 64x64
 - Upsampling to 1024



Imagen

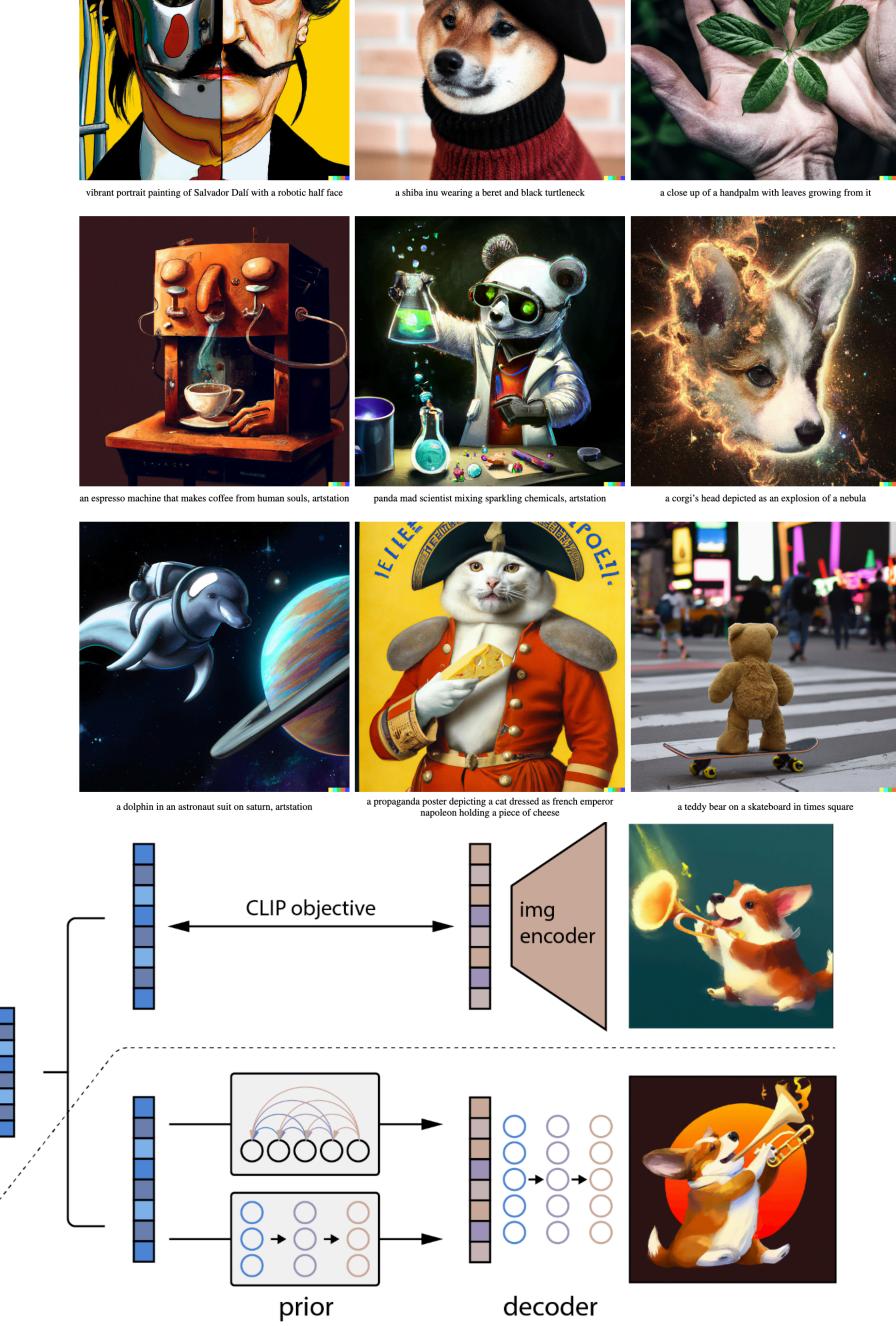
Results

A chrome-plated duck with a golden beak arguing with an angry turtle in a forest

The Toronto skyline with Google brain logo written in fireworks.

DALL-E2

- CLIP-LM conditioned diffusion
 - 64x64 results
 - Upsampling $64 \times 64 \rightarrow 256 \times 256 \rightarrow 1024 \times 1024$



"a corgi

flame

encoder

playing a

throwing

trumpet"

DALL-E3

- Better data
 - Recaptioned dataset

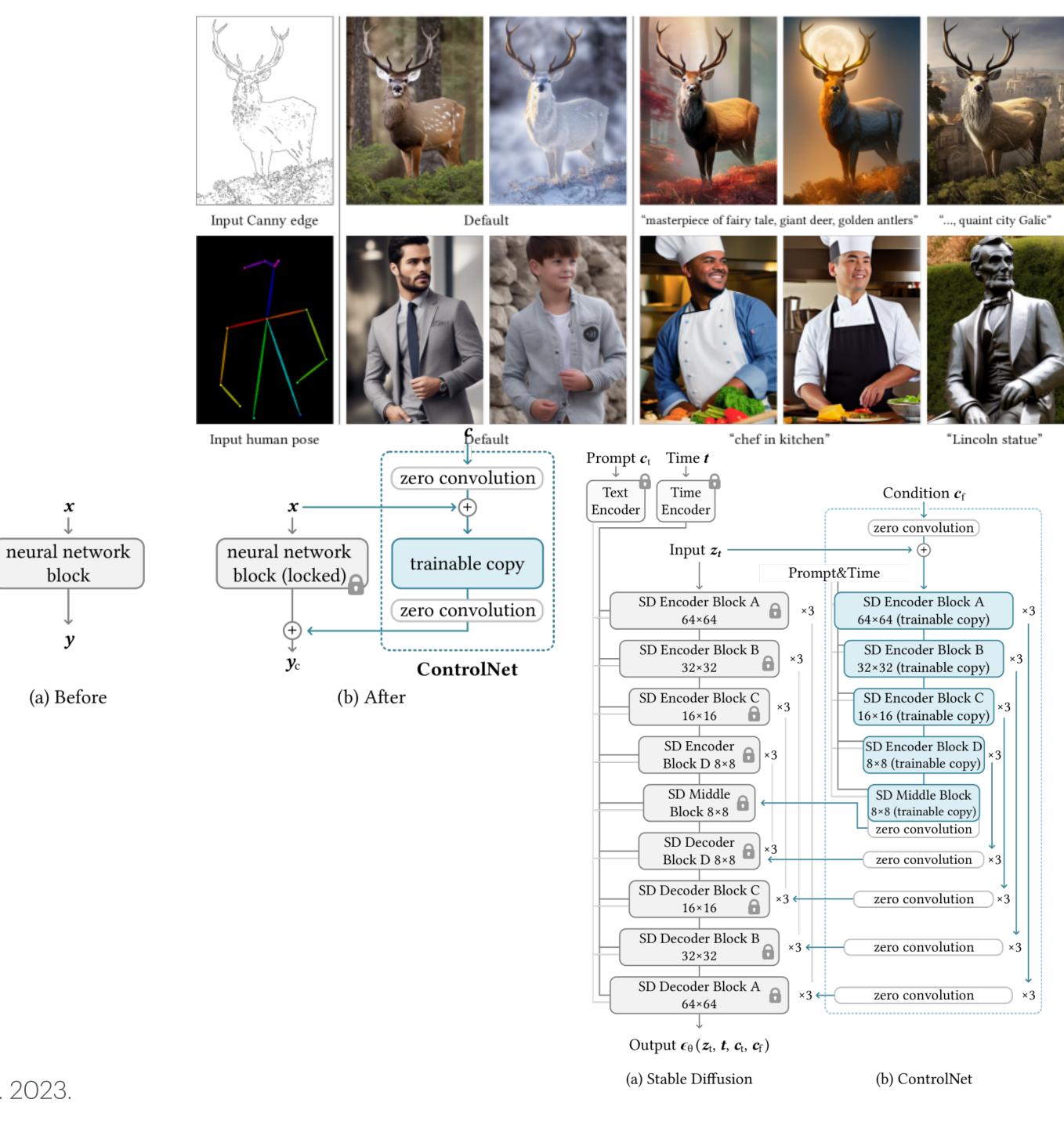
A fierce garden gnome warrior, clad in armor crafted from leaves and bark, brandishes a tiny sword and shield. He stands valiantly on a rock amidst a blooming garden, surrounded by colorful flowers and towering plants. A determined expression is painted on his face, ready to defend his garden kingdom.

An icy landscape under a starlit sky, where a magnificent frozen waterfall flows over a cliff. In the center of the scene, a fire burns bright, its flames seemingly frozen in place, casting a shimmering glow on the surrounding ice and snow.

A swirling, multicolored portal emerges from the depths of an ocean of coffee, with waves of the rich liquid gently rippling outward. The portal engulfs a coffee cup, which serves as a gateway to a fantastical dimension. The surrounding digital art landscape reflects the colors of the portal, creating an alluring scene of endless possibilities.

ControlNet

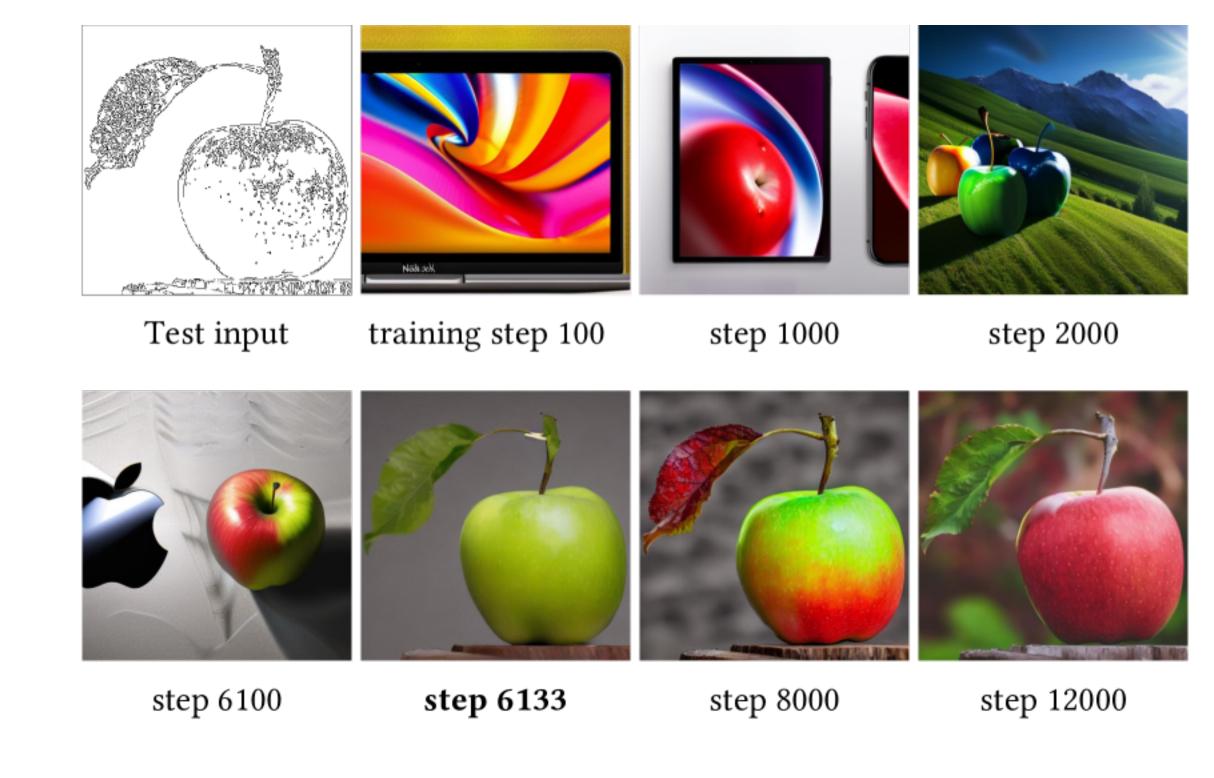
- "Condition" on more than just text
- Start from pre-trained model
- Add copy of encoder
 - For additional input
 - Fuse with zero-initialized convolution



block

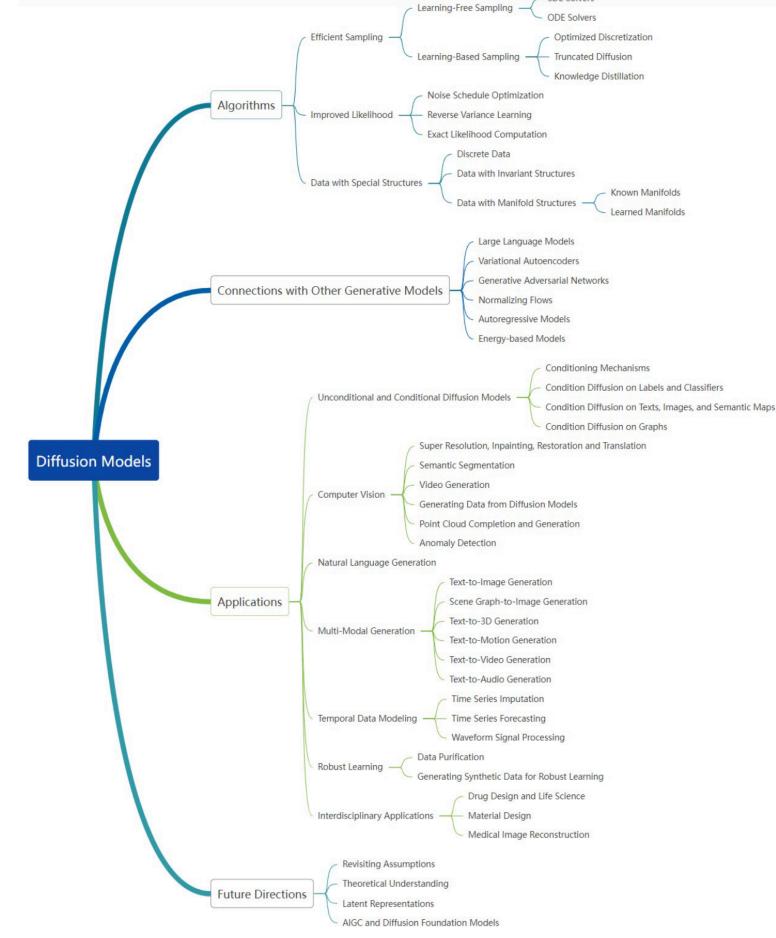
ControlNet

- Training objective: Denoise
 - Original image + noise
 - Continioned on auto-generated edge detections, pose tracks, ...
- Trains quite quickly



Diffusion is a large field

- More efficient sampling
 - One step diffusion, ...
- More efficient architectures
- More efficient training
 - · Noise schedules, variance learning, ...
- •

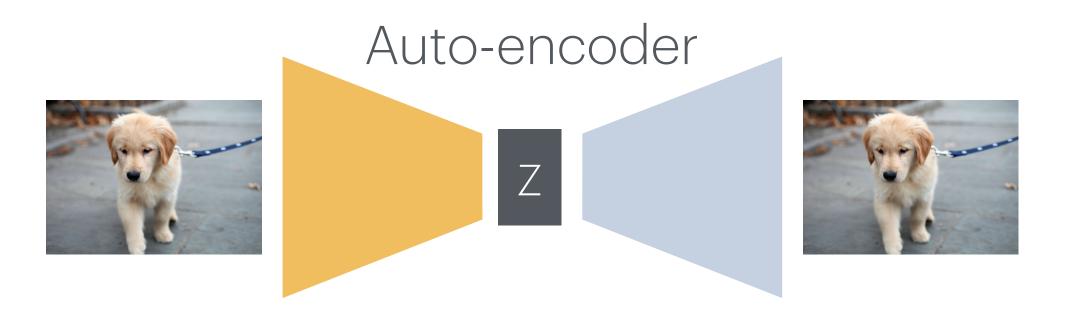


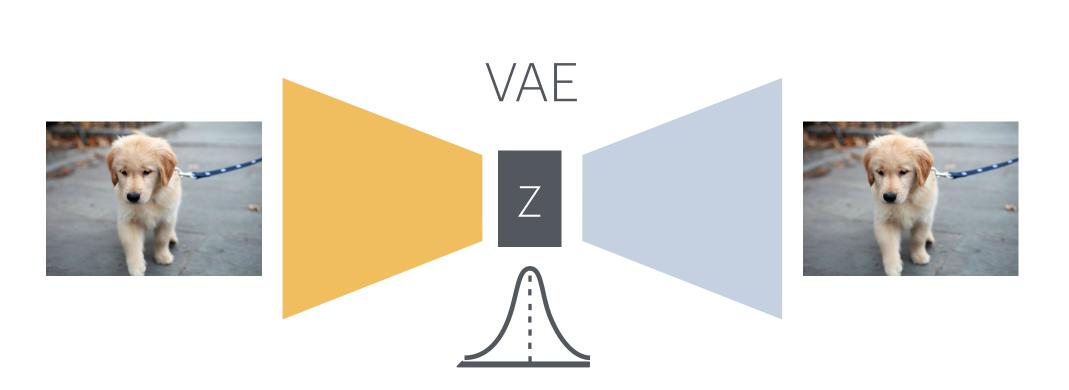
References

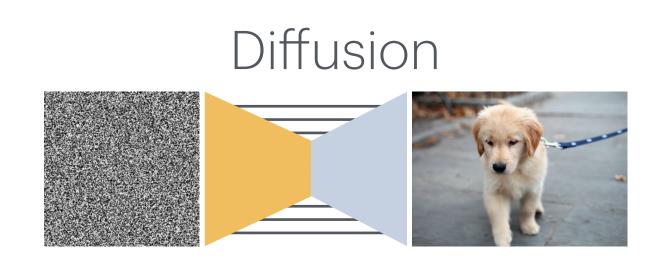
- Denoising Diffusion Probabilistic Models. Jonathan Ho, et al. 2020.
- Generative Modeling by Estimating Gradients of the Data Distribution. Yang Song, et al. 2019.
- Diffusion Models Beat GANs on Image Synthesis. Prafulla Dhariwal, et al. 2021.
- High-Resolution Image Synthesis with Latent Diffusion Models. Robin Rombach, et al. 2021.
- Scalable Diffusion Models with Transformers, Peebles and Xie 2023
- Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. Chitwan Saharia, et al. 2022.
- Hierarchical Text-Conditional Image Generation with CLIP Latents. Aditya Ramesh, et al. 2022.
- Improving Image Generation with Better Captions. James Betker, et al. 2023.
- Adding Conditional Control to Text-to-Image Diffusion Models. Lymin Zhang, et al. 2023.
- One-step Diffusion with Distribution Matching Distillation. Tianwei Yin, et al. 2023.
- Diffusion Models: A Comprehensive Survey of Methods and Applications. Ling Yang, et al. 2022.

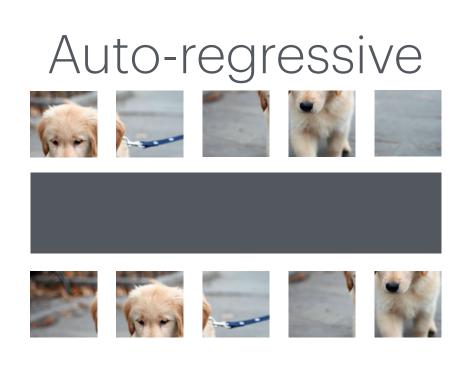
Which Generative Model Should I Use?

Recap

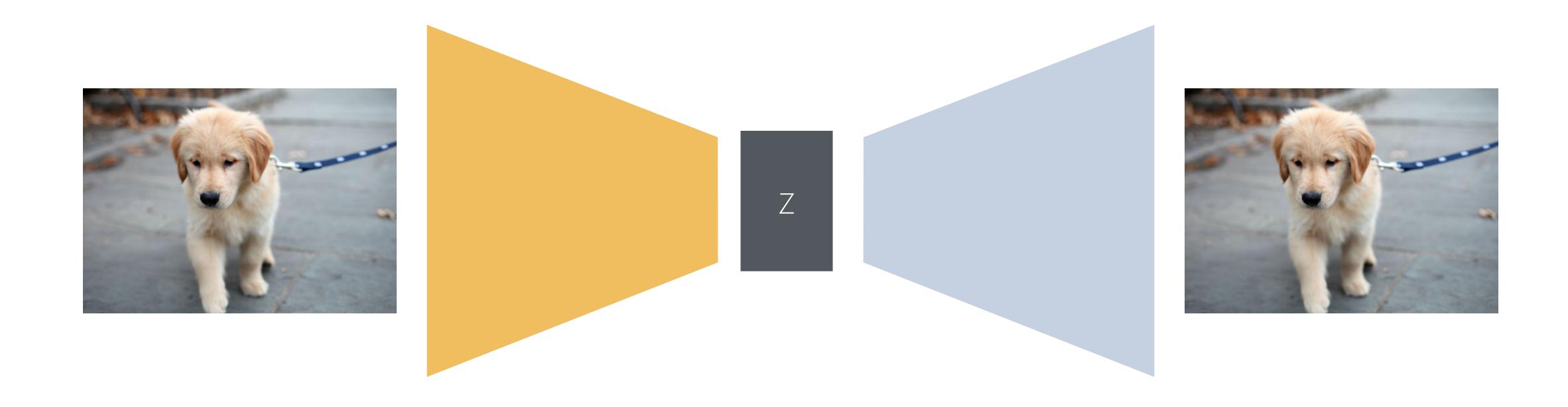




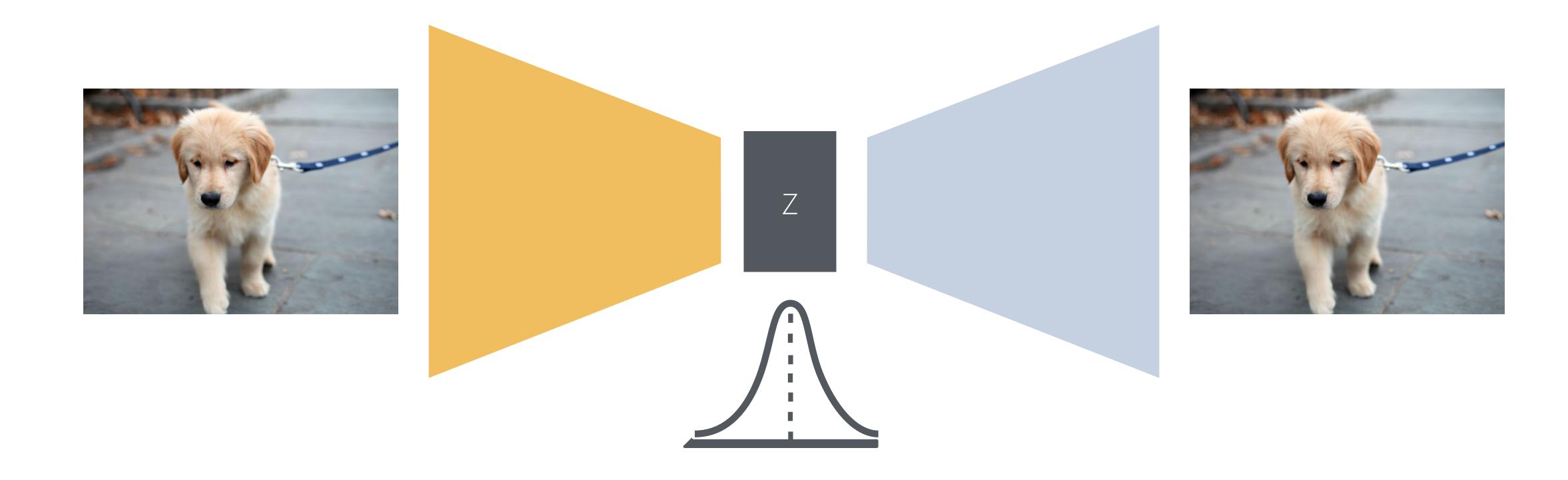




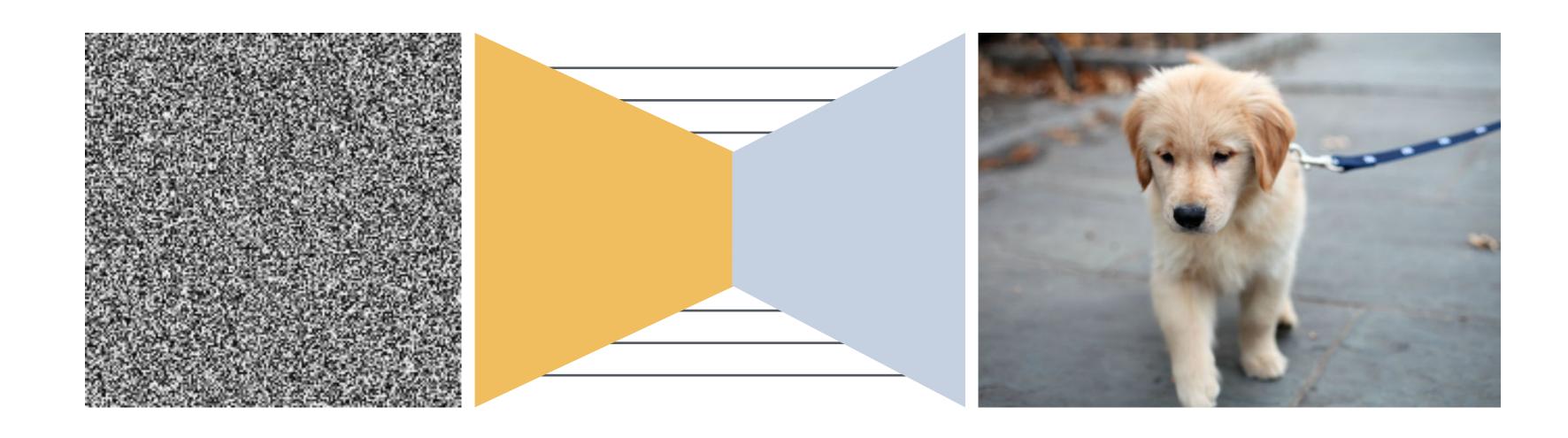
Auto-encoder



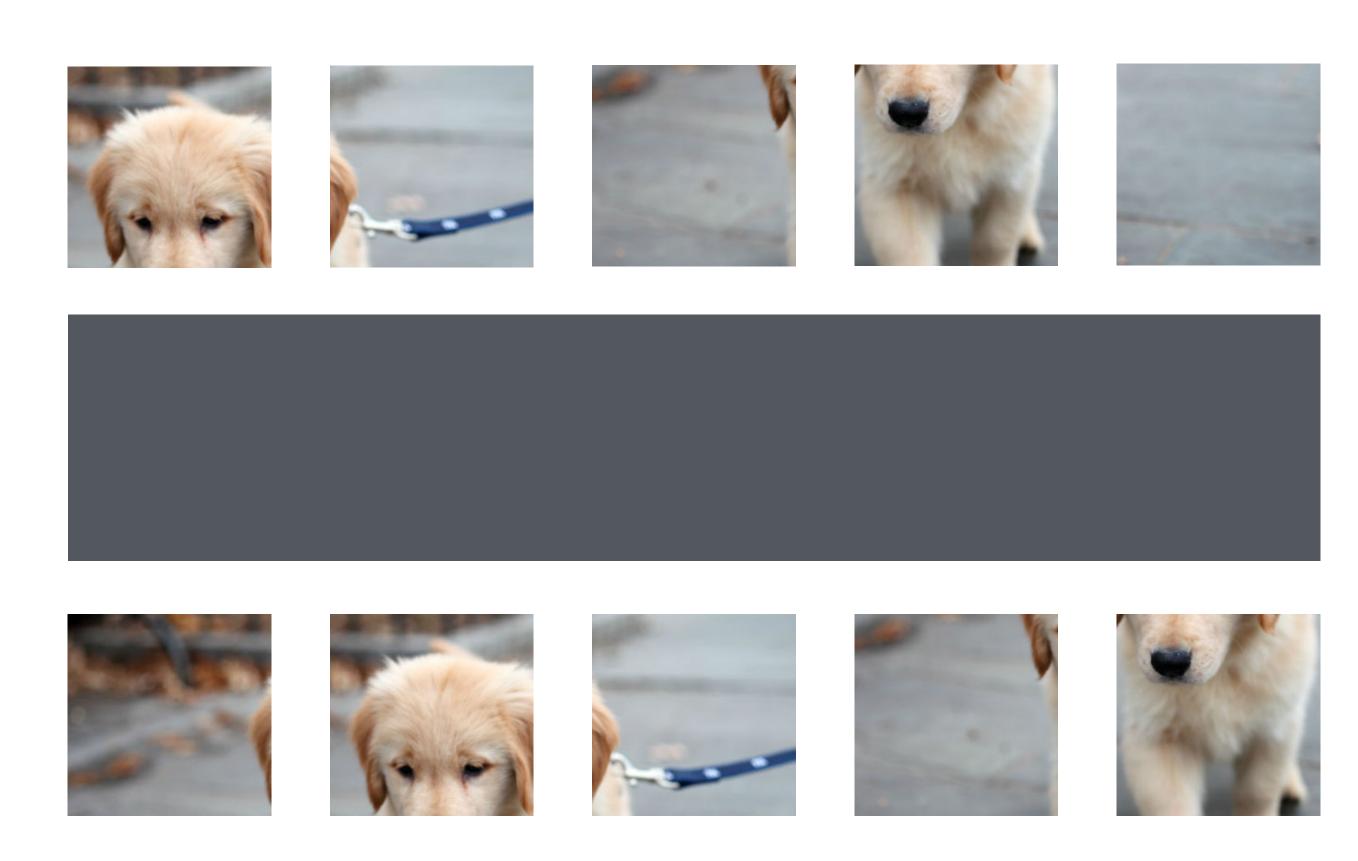
Variational Auto-Encoder



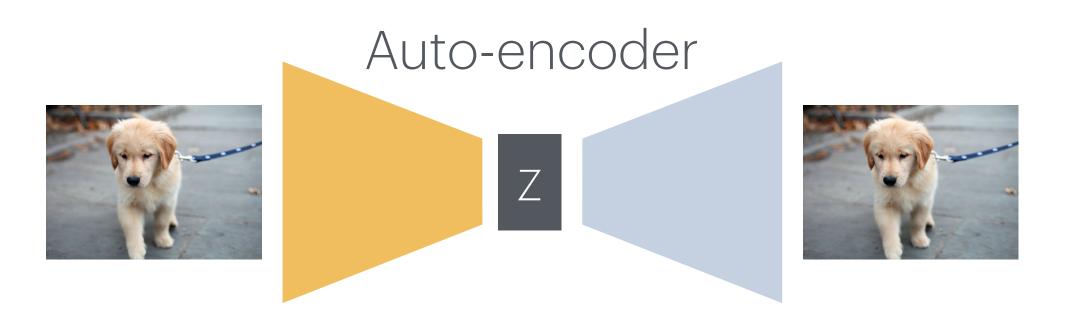
Diffusion Models

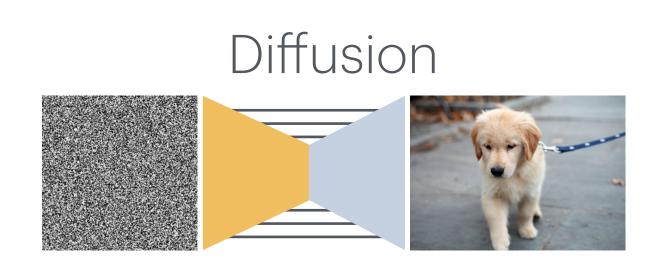


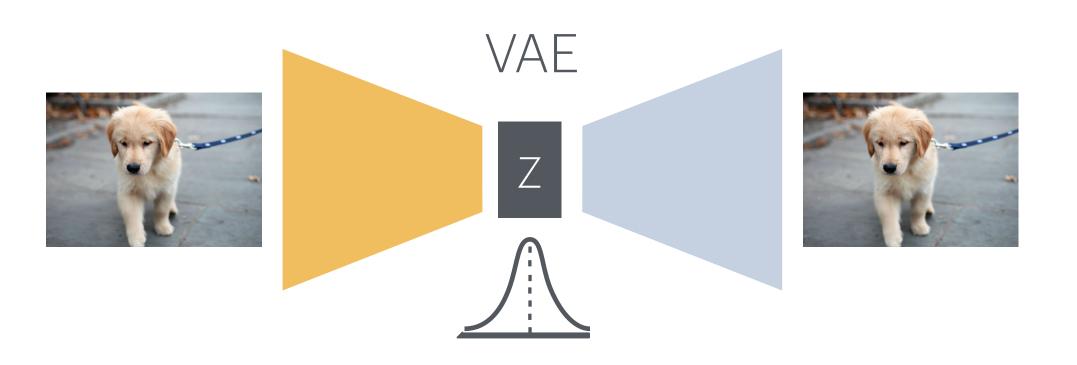
Auto-regressive Models

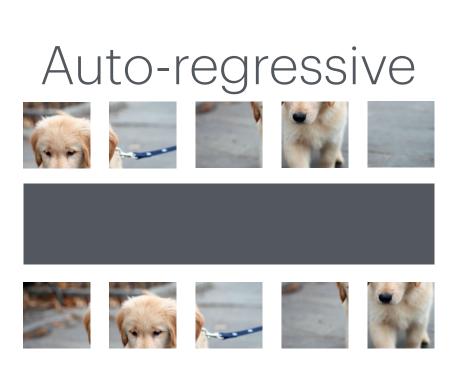


As a generative model

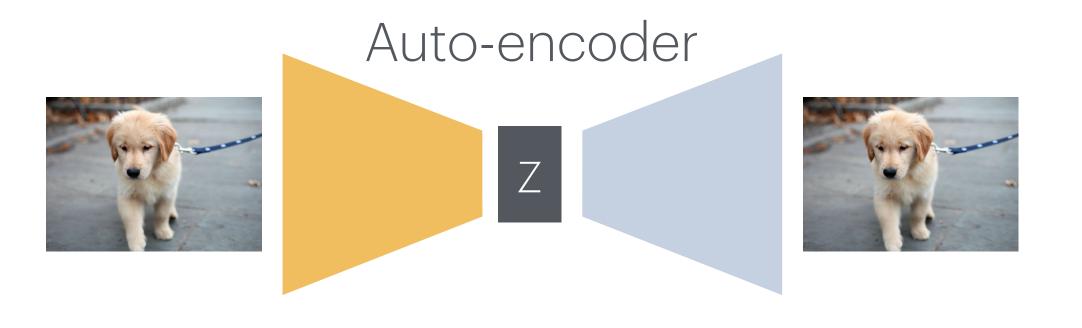




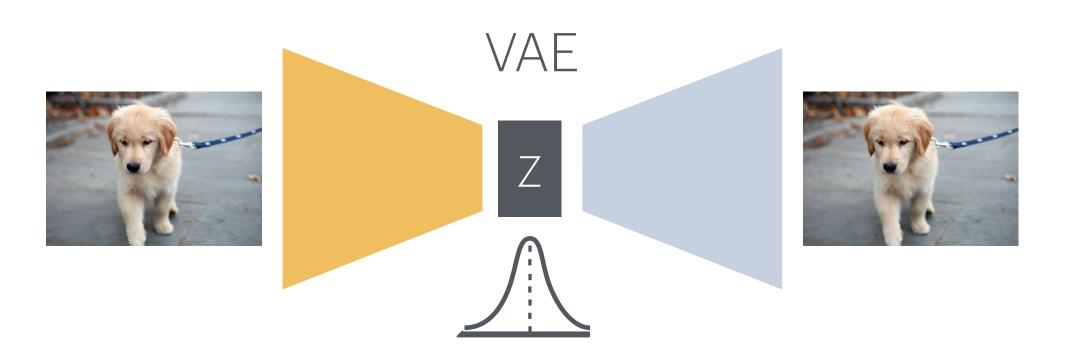


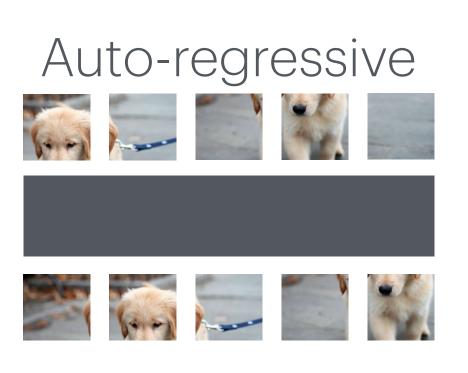


Other uses









Pre-trained models exist

Own domain No prior models exist

Pre-trained models exist

Big compute

Small compute

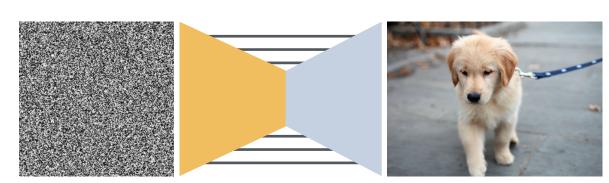
Own domain No prior models exist

Pre-trained models exist

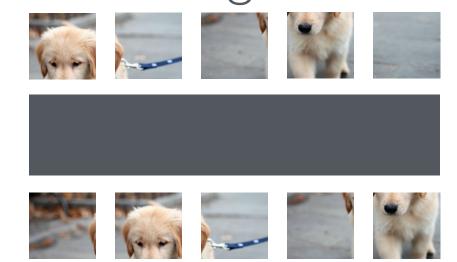
Big compute

Train

Diffusion



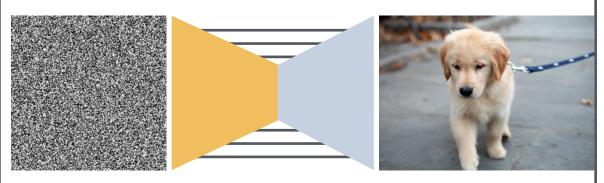
Auto-regressive



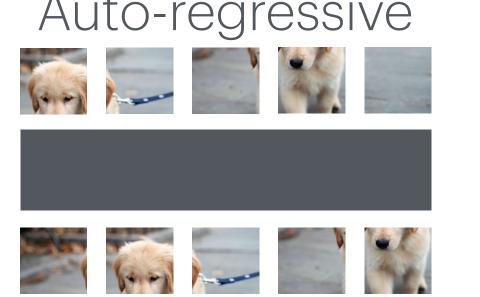
Small compute

Fine-tune

Diffusion



Auto-regressive



Own domain No prior models exist

Pre-trained models exist

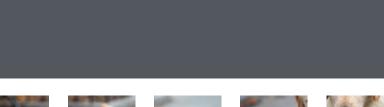
Small compute

Fine-tune

Diffusion

Auto-regressive





Own domain No prior models exist

Big data, big compute

Small data small compute

Diffusion

Auto-regressive

Big compute

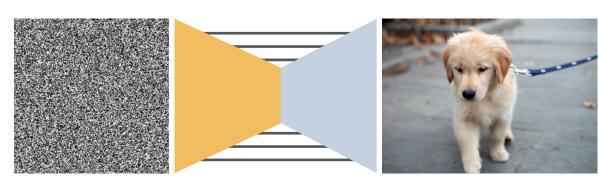
Train

Pre-trained models exist

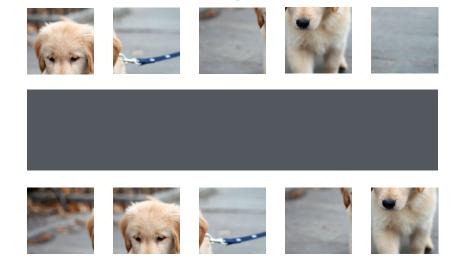
Big compute

Train

Diffusion



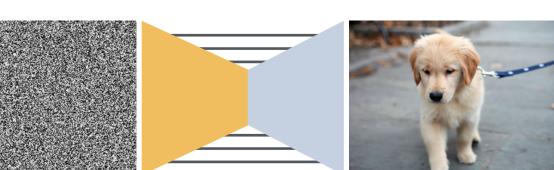
Auto-regressive



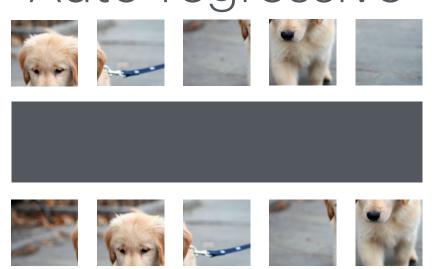
Small compute

Fine-tune

Diffusion



Auto-regressive

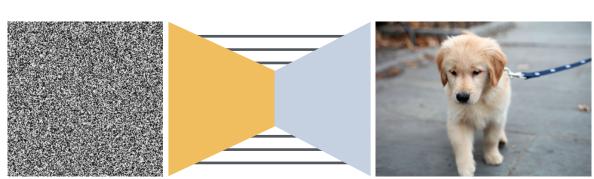


Own domain No prior models exist

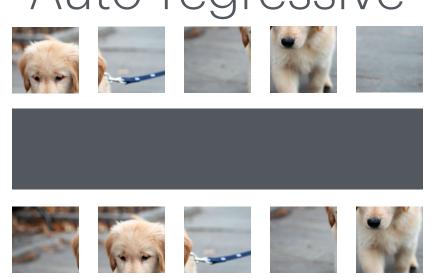
Big data, big compute

Train

Diffusion

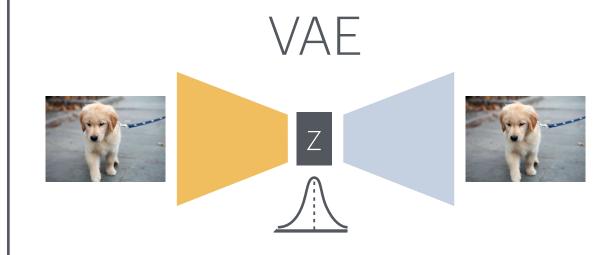


Auto-regressive

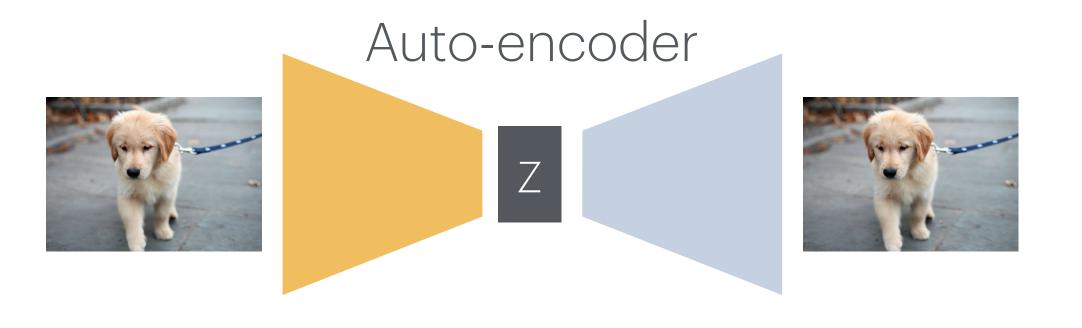


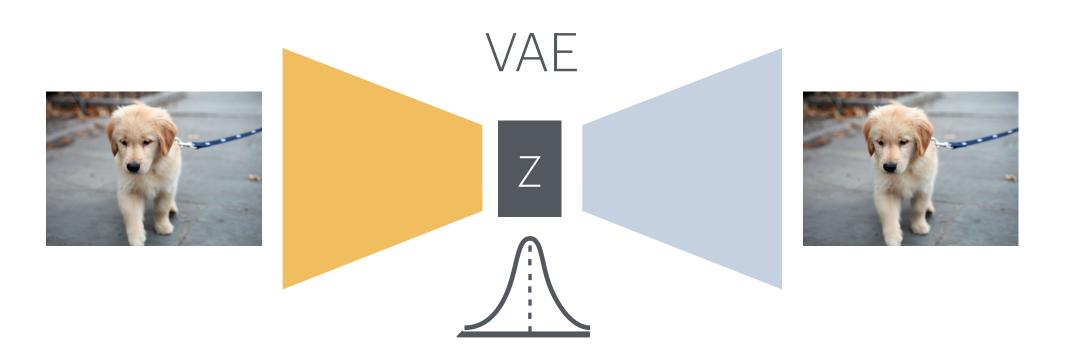
Small data small compute

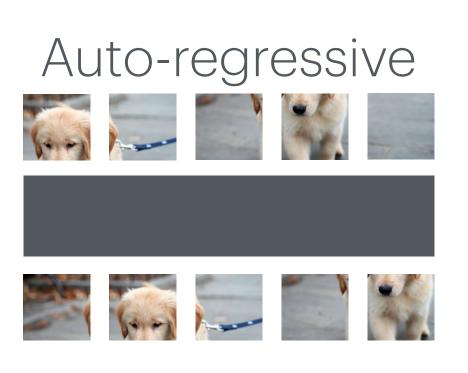
Train



Other uses







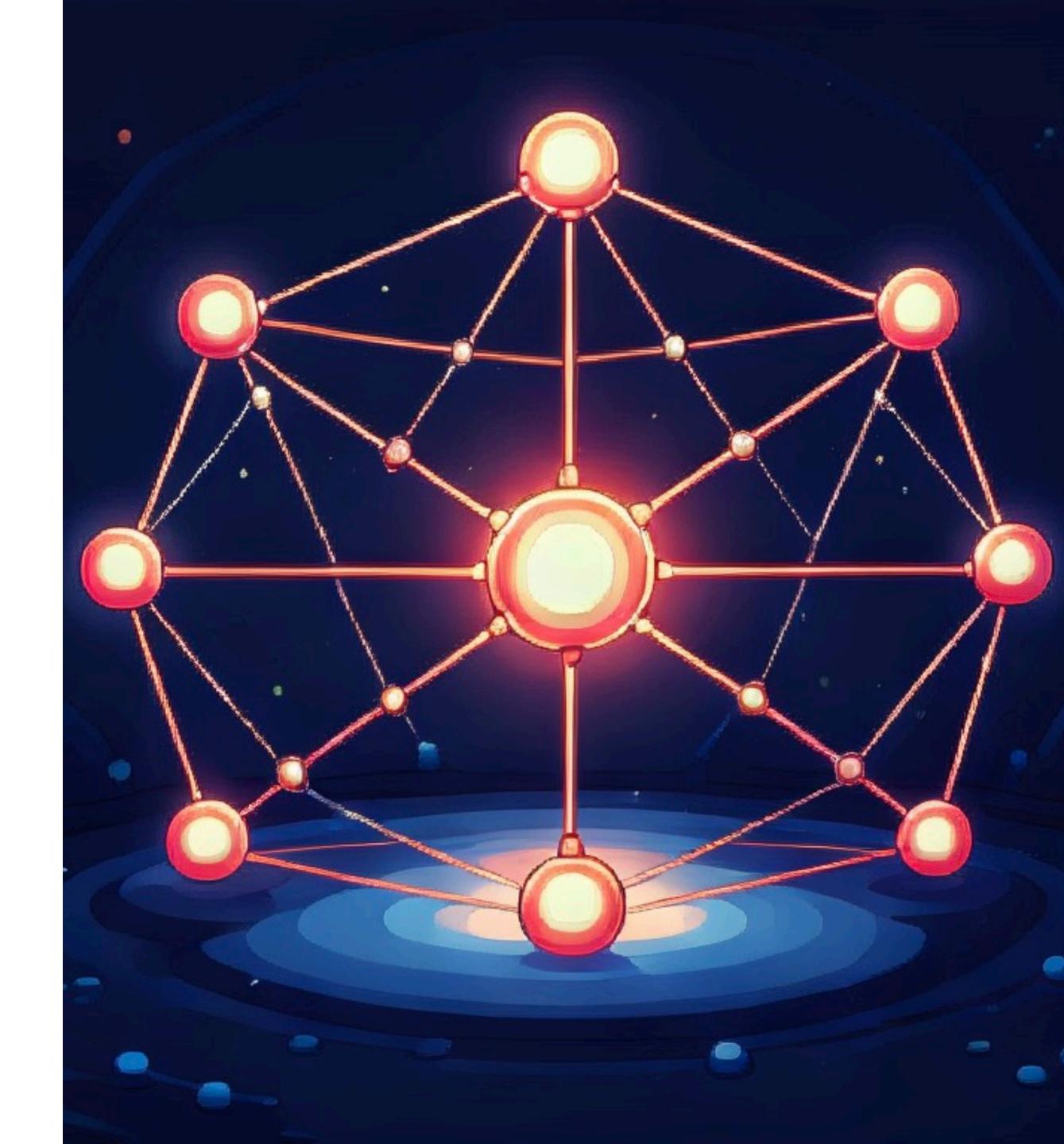
Diffusion - What have we learned about Deep Learning?

Data is King

- Large dataset = Good generations
- High-quality dataset = Good generations

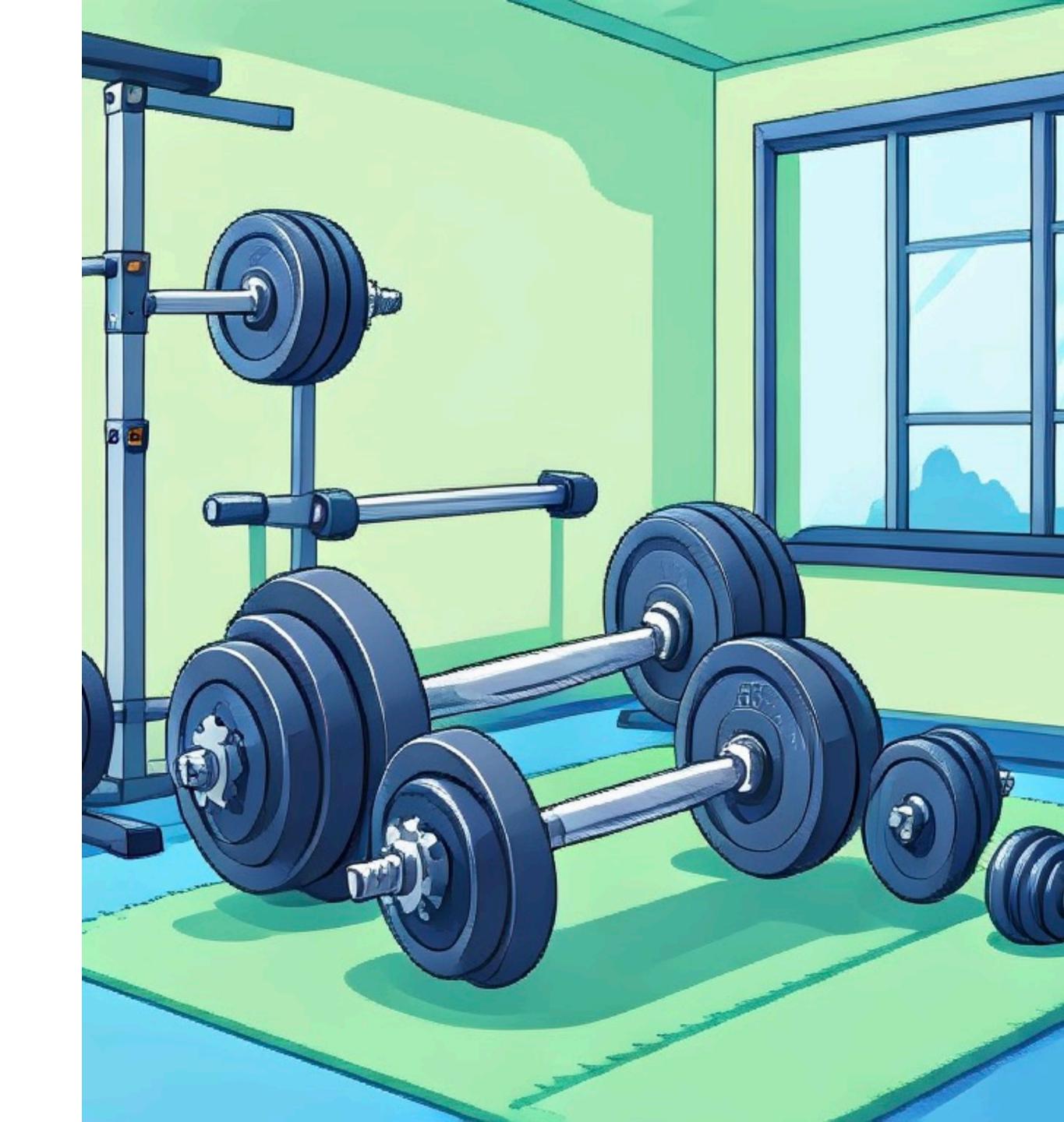
Models are secondary

- Tweaks on architecture give small improvements
- Systems and training setups matter
- Model = Capacity + Efficiency



Training is solved

SGD / Adam just works



Processes matter

- Training is more complex than f(x)=y
- Inferences is more complex than f(x)=y

