Deep Learning Class

IntroductionSlides
What Is Deep Learning?Slides
Basic StatisticsSlides
Distributions and Sampling in PyTorchLectureExtended
A Basic Statistical Model in PyTorchLectureExtended
Basic Linear AlgebraSlides
TensorsSlides
Tensors in PyTorchLectureExtended
GradientsSlides
First ExampleSlides
Regression and ClassificationSlides
Datasets and LossesSlides
Loss Functions in PyTorchLectureExtended
OptimizationSlides
Computational GraphsSlides
Computation Graphs in PyTorchLectureExtended
Linear Regression in PyTorchLectureExtended
Binary Logistic Regression in PyTorchLectureExtended
Multi-Class Logistic Regression in PyTorchLectureExtended
First Example - SummarySlides
Deep NetworksSlides
NonlinearitiesSlides
Activation FunctionsSlides
Output RepresentationsSlides
Loss FunctionsSlides
Stochastic Gradient DescentSlides
Stochastic Gradient Descent in PyTorchLectureExtended
Training a Deep Network in PyTorchLecture
HyperparametersSlides
Variance Reduction in SGDSlides
Deep Networks in PyTorchLectureExtended
A Practical Guide to Deep Network DesignSlides
Residuals and NormalizationsSlides
Vanishing and Exploding GradientsSlides
NormalizationsSlides
Normalizations in PyTorchLectureExtended
Residual ConnectionsSlides
Residual Connections in PyTorchLecture
Residuals and Normalizations - SummarySlides
ConvolutionSlides
ConvolutionsSlides
Structure of ConvolutionsSlides
Convolutions in PyTorchLecture
PoolingSlides
Design Principles of Convolutional NetworksSlides
Convolutional Networks in PyTorchLecture
Deep RepresentationsSlides
Dilation and UpconvolutionSlides
Dilation and Upconvolution in PyTorchLecture
Convolution - SummarySlides
TransformersSlides
AttentionSlides
Multi-Head AttentionSlides
Multi-Head Attention in PyTorchLecture
Positional EmbeddingsSlides
Positional Embeddings in PyTorchLecture
The Transformer ArchitectureSlides
The Transformer Architecture in PyTorchLecture
ApplicationsSlides
Training a Transformer in PyTorchinclass extended
Transformers - SummarySlides
Making It WorkSlides
Data and Advanced Network DesignSlides
Advanced TrainingSlides
OverfittingSlides
Making It Work in PyTorchinclass
Making It Work - SummarySlides
End of ClassSlides