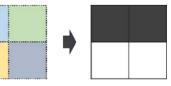
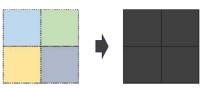

Design Principles of Convolutional Networks

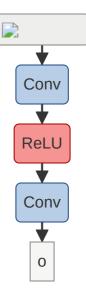
Recap: Convolution


Convolution is a spatially anchored linear operation

- Fast, memory-efficient
- Preserves image structures



*


Recap: Convolutional Network

Alternate

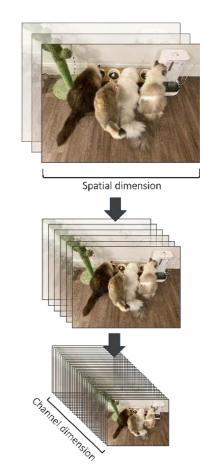
- Convolution
- Non-linearity
- Normalization and residuals for deeper networks

Use stride

- Trade channels for spatial resolution
- Larger receptive field
- More global patterns

Design of Convolutional Networks

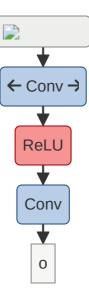
After stride


- More Channels (wider network)
- Lower resolution (width / height)

What does that mean for number of activations?

- Total activations shrink by 2 imes after stride
- $C \times W \times H \rightarrow 2C \times \frac{W}{2} \times \frac{H}{2}$

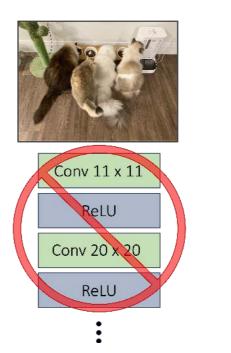
Is this a good idea throughout the network?


- No. Will lose information every stride
- Solution: Expand dimension in first layer

Design of ConvNets

Wide first layer

- Channels 64-96
- Large kernel size 7-16
- Strided (2-16)


Keep Kernels Small

Use 3 imes 3 or 1 imes 1 (almost) everywhere

- Avoid using large kernels (e.g., 11×11)
- **Exception**: first layer often uses large kernel

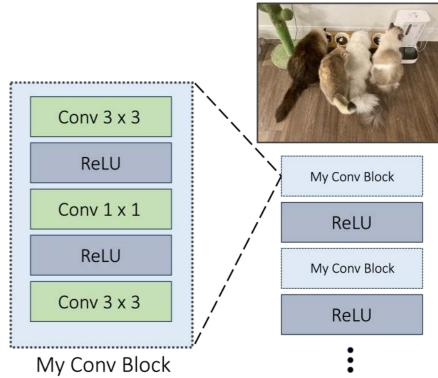
Why?

- Saves computation
- More layers in sequence often better

Conv 3 x 3
ReLU
Conv 1 x 1
ReLU
:

Repeat Patterns

Use repeatable *pattern*


- This is called *block*.
- Include nonlinearities, normalizations, residuals

Repeat *block* multiple times

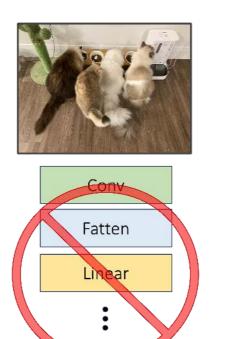
- Optionally stride within block
- **Exception**: first layers are different

Why?

Saves time: developing, debugging, tuning

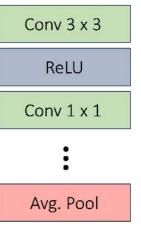
Make It All Convolutional

Avoid using linear layers


Too many parameters

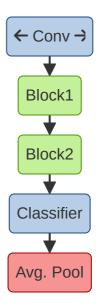
Average in the end

Global average pooling


As many shared parameters as possible

Better training signal

Linear


Design of ConvNets

Wide first layer

- Channels 64-96
- Large kernel size 7-16
- Strided (2-16)

Repeating blocks

- = $\leq 3 imes 3$ convolution
- All convolutional

Design Principles of Convolutional Networks - TL;DR

Increase channel dimension and decrease spatial dimensions

Keep kernels small

Repeat patterns