
# Dilation and Up-Convolution

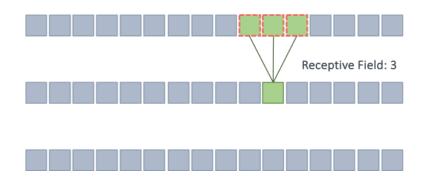
### Recap: Receptive Field

For a location (i, j) in output y, **receptive field** is the set of locations in input x that affect  $y_{i,j}$ 

Factors that affect receptive field size:

- Kernel size *k*
- Stride *s*
- Number of layers l




Receptive field of  $y_{i,i}$ 

### Receptive Field With Large Kernels

Kernel size k > 1 increases receptive field size

**Example:** Single layer convolution (k = 3)

- Kernel size k=3, stride s=1
- Number of layers l=1
- $\blacksquare$   $\Longrightarrow$  r=3



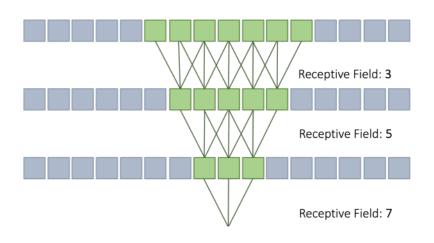
### Receptive Field With Large Kernels

Kernel size k>1 increases receptive field size

**Example:** Two layer convolution (k=3)

- Kernel size k=3, stride s=1
- Number of layers l=2
- $\blacksquare$   $\Longrightarrow$  r=5



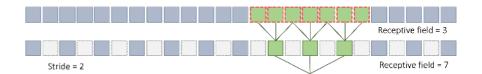

### Receptive Field With Large Kernels

Kernel size k > 1 increases receptive field size

**Example:** Three layer convolution (k=3)

- Number of layers l=3
- lacksquare Kernel size k=3, stride s=1
- ightharpoonup r=7

Larger kernels/more layers are computationally expensive!



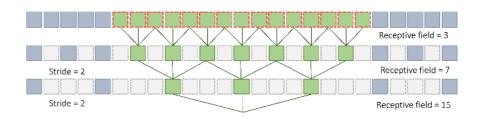

## Receptive Field With Striding

Stride s>1 increases the receptive field size

#### **Example:** Convolution with stride

- lacksquare Number of layers l=2
- Kernel size k=3, stride s=2
- $\blacksquare$   $\Longrightarrow$  r=7

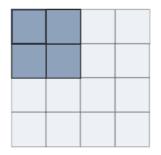



## Receptive Field With Striding

Stride s>1 increases the receptive field size

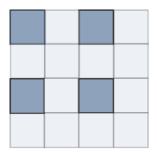
#### **Example:** Convolution with stride

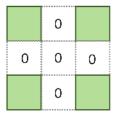
- Number of layers l=3
- Kernel size k=3, stride s=2
- ightharpoonup r=15


#### **Stride decreases output size!**



### Dilation


Add 0-padding in between kernel


- Same effect as larger kernel
- Parameter count stays the same!





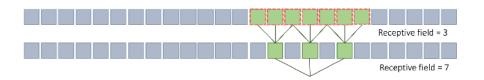
2 x 2 convolution

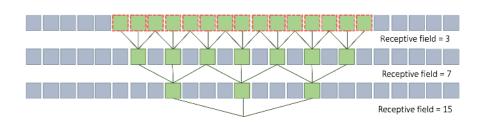




2 x 2 dilated convolution (d=2)

### Receptive Field With Dilation


#### Dilation does not decrease the output size


#### **Example:** Dilated convolution

- Number of layers l=2
- r=7
- input size = output size = 25

#### **Example:** Dilated convolution

- Number of layers l=3
- r = 15
- input size = output size = 25



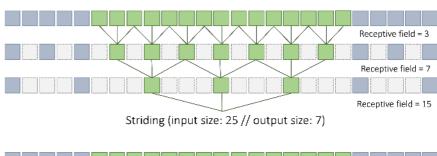


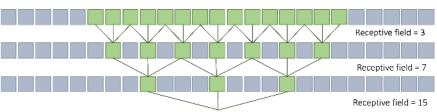
### Dilation vs Striding

#### **Convolution with Stride**

Output size decreases

lacksquare Size change: 25 o 7


#### **Dilated Convolution**


Output size stays the same

lacksquare Size change: 25 o25

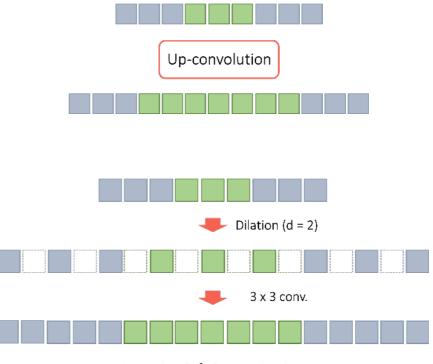
Also known as atrous convolution

Downside: **slow** 





Dilation (input size: 25 // output size: 25)

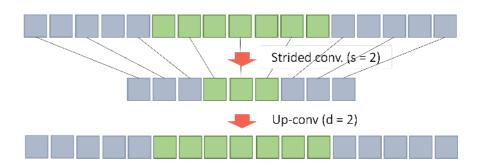

### **Up-Convolution**

How can we *increase* output size?

Inverse of strided convolution?

#### **Up-Convolutions**

Dilation of the input



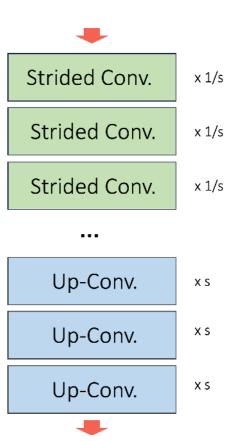

Input size: 9 -> Output size: 17

### **Up-Convolution**

Often used together with strided convolution

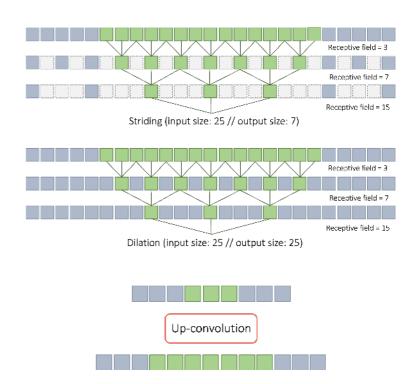
When strided convolution rounds down, interpolate to match shape




### **Up-Convolution in Action**

#### In Practice:

- Used close to output layers
- Provides lower-level high-res features to output


#### Also known as:

- 1. Transposed convolution
- 2. "Deconvolution"
- 3. Fractionally strided convolution



### Striding vs Up-Convolution vs Dilation

- 1. **Striding** adds 0s to output
- 2. **Dilation** adds 0s to kernel
- 3. **Up-convolution** adds 0s to input



### Dilation and Up-Convolution - TL;DR

Strided convolution increases receptive field while decreasing output size

Dilated convolution increases receptive field without decreasing output size

Up-convolution increases output size