Structure of Convolutions

Recap: Convolution

Convolution is a spatially anchored linear operation

- Fast, memory-efficient
- Preserves image structures

*

Alternate

- Convolution
- Non-linearity
- Normalization and residuals for deeper networks

Issue 1: Vanilla convolution shrinks inputs

Convolution Output Size

Output: $y \in \mathbb{R}^{C_2 imes (H-h+1) imes (W-w+1)}$

Output size depends on

- Input size: $H \times W$
- Kernel size: h imes w

A simple example:

- 4×4 input
- 2×2 kernel $\Rightarrow 3 \times 3$ output

Output size shrinks down with convolutions!

Convolution With Padding

Padding: Pad the *input* to match the output size

- Pad the input with a constant (e.g., 0)
- Output size grows by 1

Convolution With Padding

What happens if the image is padded only on oneend?

Image context shift! (gray: padded area)

Solution: Always pad symmetrically

0

0

0

0

Padding value: 0

0

0

Convolution With Padding

Add p_w and p_h of a value c in each dimension

Input	$C_1 imes H imes W$		0	0	0	0	0	0	_				
			0					0					
Padded Input	$C_1 imes (H+2p_h) imes (W+2p_w)$		0					0					
			0					0					
			0					0					-
Kernel	$C_1 imes C_2 imes h imes w$	p_h	0	0	0	0	0	0					
Output	$(\mathbf{U} + (\mathbf{U} + 0) + 1) + (\mathbf{U} + 0)$	Padding value: 0 p_w											
	$C_2 \times (H+2p_h-h+1) \times (W+2p_w-w+1)$												
	1)												

For simplicity: Pad to retain size

•
$$w=2p_w+1$$
, $h=2p_h+1$

Alternate

- Convolution
- Non-linearity
- Normalization and residuals for deeper networks
- ✓ Issue 1: Vanilla convolution shrinks inputs

Issue 2: Vanilla convnets get very slow as ${\cal C}$ grows

Vanilla convnets get very slow as C grows

Computational cost of convolution

 $O(WHwhC_1C_2)$

Solution: Shrink \boldsymbol{W} and \boldsymbol{H}

- Shrink W and H
- Increase *C*

. . .

Convolution With Stride

Only compute every s_w / s_h -th output

Skip (do not compute) outputs

Input $C_1 \times H \times W$

Kernel $C_1 imes C_2 imes h imes w$

$$\begin{array}{ll} \mathsf{Output} \quad C_2 \times \left(\left\lfloor \tfrac{H-h+2p_h}{s_h} \right\rfloor \, + \, 1 \right) \times \left(\left\lfloor \tfrac{W-w+2p_w}{s_w} \right\rfloor \, + \, 1 \right) \end{array}$$

Advantages

- Computational efficiency later layers
- Larger receptive field later layers

Stride and Rounding

Output size: $\left(\left\lfloor \frac{H-h+2p_h}{s_h} \right\rfloor + 1 \right) imes \left(\left\lfloor \frac{W-w+2p_w}{s_w} \right\rfloor + 1 \right)$

What if $W-w+2p_w$ is not divisible by s_w ?

- We round down
- Cut content

Odd image resolution

Alternate

- Convolution
- Non-linearity
- Normalization and residuals for deeper networks
- ✓ Issue 1: Vanilla convolution shrinks inputs

✓ Issue 2: Vanilla convnets get very slow as C grows

What is my CNN is still too slow?

Group Convolution

Computational cost of convolution

 $O(WHwhC_1C_2)$

More efficient type of convolution

• Splits channels into *g* groups

$$O(WHwhC_1C_2) o O\left(rac{WHwhC_1C_2}{g}
ight)$$

Reduced computation cost

$$O(C_1 \cdot C_2) o O(C_1 \cdot C_2/g)$$

Group Convolution

Special Convolution: Depthwise Convolution

An extreme case

- Special grouping where $C_1 = C_2 = g$
- Reduce computation cost:

 $O(WHwhC_1C_2)
ightarrow O\left(WHwhC_1
ight)$

What cloud go wrong?

Depthwise Convolution

Special Convolution: Depthwise Convolution

Depthwise convolution cannot communicate across channels.

- Example: RGB image
- No reasoning about colors, just red-ness, greenness, blue-ness

Solution: Always add 1×1 convolution! <u>1</u>.

- Depthwise Convolution: $O(WHwhC_1)$
- 1x1 Convolution: $O(WHC_1C_2)$

Hyperparameters of Convolutions

Output channels: C_2

 $\textbf{Groups:} \ g$

Kernel size: w and h

Padding: p_w and p_h

Stride: s_w and s_h

Hyperparameters of Convolutions - The Illusion of Choice

Stride: $s_w = s_h \in \{1,2\}$

Kernel size: $w=h\in\{1,3\}$ (mostly)

Output channels: $C_2 = C_1 s_w = C_1 s_h$ (powers of 2)

• Keeps computation constant $O(WHwhC_1C_2)$

Groups: *g* (expert use only. Ignore.)

Padding: $p_w = rac{w-1}{2}$ and $p_h = rac{h-1}{2}$

Do not change activation size

Alternate

- Convolution
- Non-linearity
- Normalization and residuals for deeper networks

Use stride

- Trade channels for spatial resolution
- Larger receptive field
- More global patterns

Convolutional Operators and Their Structure - TL;DR

Use padding and striding to control output size of convolution layers

Group and depthwise convolution reduce computation cost

Depthwise convolution cannot mix information across channels