Activation Functions

Recap: Non-Linearities

Rectified Linear Unit (ReLU)

 $\operatorname{ReLU}(x) = \max(x, 0)$

Allows deep networks to model arbitrary differentiable functions

Zoo of Activation Functions

ReLU

 $\operatorname{ReLU}(x) = \max(x, 0)$

✓ Simple

× ReLU units can be fragile during training and "die"

Dead ReLUs

How can we prevent dead ReLUs?

- Initialize network carefully
- Decrease the learning rate

Leaky ReLU

 $LeakyReLU(x) = max(x, \alpha x)$

- Where 0 < lpha < 1
- Called **PReLU** if α is learned
- ✓ Non-negative gradient for negative inputs
- ${\pmb{\times}}$ The slope α needs to be tuned
- × Cannot wipe the negative signal out

Elu

$$\mathrm{ELU}(x) = egin{cases} x & ext{if } x \geq 0 \ lpha(e^x-1) & ext{if } x < 0 \end{cases}$$

- \checkmark Non-negative gradient for negative inputs
- $\mathbf{X}\,\alpha$ needs to be tuned
- × Exponential is computationally expensive

GeLU

 $\operatorname{GeLU}(x) = x imes \Phi(x)$

- Where $\Phi(x)$ is the CDF of the standard Gaussian

• $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$

✓ Non-zero gradient for negative inputs

× Requires more computation

Sigmoid

$$\sigma(x)=rac{1}{1+e^{-x}}$$

• Same as
$$tanh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$$

× Saturates on both ends

➤ Do **not** use sigmoid/tanh

Which Activation to Choose?

Activation Functions - TL;DR

Use ReLU with careful initialization and small learning rate

If ReLU fails, try Leaky ReLU or PReLU

Avoid Sigmoid and Tanh

Use GeLU for sophisticated models