Output Representations

Recap: Deep Networks

Universal Approximation Theorem

A two-layer deep network can approximate any continuous function.

We might not always want continuous (real-valued) outputs

How can we convert the real value to what we want?

Inputs and Outputs of Networks

Input: $\mathbf{x} \in \mathbb{R}^n$

Output: $\mathbf{o} = f_{ heta}(\mathbf{x})$

• f_{θ} : deep network

Output transformations: g

 $\psi:f_\theta\circ g$

Regression

Regression $\psi:\mathbb{R}^n o\mathbb{R}$

• Identity mapping: $g(\mathbf{o}) = \mathbf{o}$

Positive Regression

Positive regression $\psi:\mathbb{R}^n o\mathbb{R}_+$

Option 1: ReLU

 $\hat{\mathbf{y}} = g(\mathbf{o}) = \max(\mathbf{o}, 0)$

Option 2: Soft ReLU

• $\hat{\mathbf{y}} = g(\mathbf{o}) = \log(1 + e^{\mathbf{o}})$

Binary Classification

Binary classification $\psi: \mathbb{R}^n o [0,1]$

Option 1: Thresholding

•
$$\hat{\mathbf{y}} = g(\mathbf{o}) = 1\{\mathbf{o} > 0\}$$

Option 2: Logistic Regression

•
$$\hat{\mathbf{y}} = \sigma(\mathbf{o}) = \frac{1}{1+e^{-\mathbf{o}}}$$

General Classification

Multi-class classification $\psi:\mathbb{R}^n o [1\dots C]$

Option 1: argmax

• $\hat{y} = \arg\max(\mathbf{o})$

Option 2: one-hot

$$\hat{\mathbf{y}} = [0,...,1,...,0]^{ op}$$

$$\bullet \quad \hat{\mathbf{y}}_i = 1 \text{ if } \mathbf{o}_i \geq \mathbf{o}_j \forall j$$

Option 3: softmax

• $p(y) = \operatorname{softmax}(\mathbf{o})$

Output Representations in Practice

Do **not** add to model

- Most output transformations are not differentiable (or hard to differentiate)
- Model cannot train with them

Model output

Always output raw values

Output Representations - TL;DR

Deep networks always output real values

Output transformations convert them into what you want

Train the network *without* output transformations!