Variance Reduction in SGD

Recap: Stochastic Gradient Descent

_ Pseudocode: Stochastic Gradient Descent
Convergence depends on variance

6 ~ Init
2 for epoch in range(n):
E 0l(0{x,y) - 8L(9‘D) for (x, y) in dataset:
xy~D 0 o0 3= V(8[x,y)
6 =06 -¢€ *J3.mT

Low variance: faster convergence

High variance: slower convergence

2/14

Variance Reduction: Mini-Batches

Average several gradients before taking step

= Closer to GD

New hyper-parameter batch_size

= Vanilla SGD uses batch_size=1
= Vanilla GD uses batch_size=1len(dataset)

= In practice, use a value in between

Stochastic Gradient Descent (with Mini-

Batch)

for epoch in range(n):

for i in range(len(dataset) // batch_size):

J =20

batch = dataset[i * batch_size:
y) in batch:

for (x,

J += V1(9]|x,y)

6 =06 -

€

J.mT

(i + 1) * batch_size]

3/14

SGD vs. SGD with Mini-batches

Stochastic Gradient Descent

for epoch in range(n):
(x, y) in dataset:

for
J)
0

Vi(8[x,y)

0 -

€

*J.mT

Stochastic Gradient Descent (with Mini-Batch)

for epoch in range(n):

for i in range(len(dataset) // batch_size):

J =20

batch = dataset[i * batch_size:
for (x, y) in batch:

J += V1(0]|x,y)

06 =06 -

€

J3.mT

(i +1)

* batch_size]

4/14

Variance of Mini-Batches

Variance of SGD with mini-batches

) 8 8 ? 8 ? 8 ?
oup = Es, [(Ex,YNBi [@Wlx,}’)] - %L(Q))] = Ep, [(Ex,yNBi [%Z(QXJ’)])] - (%L(Q))

Variance of SGD

) 8 8 8 8 ?
0sgp =]E'Bi [EX7YNBi [(@l(mx’y') - %L(QD 1] — EBi [EX»YNBi [(%Z(H}gy))]] - (%L(0)>

Variance reduction

9 ’ G,
oo~ 7hon = B | (Beses [gyt) ~Boon [(t0m) |

0 0 2
_ EBi [Ex,yNBi [(Ex,yNBi [%Z(Q‘X,y)] - %l(0|X,y)) :|“ > 0

2
ag
B;

5714

SGD vs. SGD with Mini-batches

SGD
Failed to load file Failed to lo
"/home/philkr/workspace/classes/deeplearning_v2/content/deep_networks/05_optimization/figures.ipynt/lereté/ph

6/14

How Big Should Your Mini-Batch Be?

= As big as possible!
= Preferably the power of 2 (8, 16, 32, 64, ...)

Image credit: Wikipedia (=] 7/14

https://en.wikipedia.org/wiki/GeForce_10_series#/media/File:TitanXP.jpg

Always Use Mini-Batches

8/14

Variance Reduction: Momentum

Average several consecutive gradients

Closer to GD

New hyper-parameter momentum

Vanilla SGD uses momentum=0

In practice, use momentum=0.9

Stochastic Gradient Descent (with
Momentum)

b=o0
for epoch in range(n):
for (x, y) in dataset:
b = Vl(6|x,y) + momentum * b
0 =0 -€ " b.mT

9/14

Mini-Batches vs Momentum

Stochastic Gradient Descent (with Mini-Batch)Stochastic Gradient Descent (with

for epoch in range(n): Momentum)
for i in range(len(dataset) // batch_size): b=o
J =20 - .
batch = dataset[i * batch_size: (i + 1) * batch_size] for epoch in range(n).
- for (x, y) in dataset:
for (X, y) in batch:
b V1(6|x,y) + momentum * b

J += VLl(8[x,y) 6
6 =06 -€ * J.mT

6 - € * b.mT

10/14

Variance Reduction: Momentum

= Momentum reduces variance and accelerates convergence

= Formal proofl:

1. Yurii Nesterov. Introductory lectures on convex optimization: a basic course. (=] 1/14

https://pages.cs.wisc.edu/~yliang/cs839_spring22/material/Introductory-Lectures-on-Convex-Programming-Yurii-Nesterov-2004.pdf

SGD vs. SGD with Momentum

SGD
Failed to load file Failed to lo
"/home/philkr/workspace/classes/deeplearning_v2/content/deep_networks/05_optimization/figures.ipyntylereté/ph

12714

What Should Your Momentum Value Be?

= Everyone uses momentum=0.9

= PyTorch defaults momentum=0, so don't forget to change

Docs > torch.optim > SGD

SGD

CLASS torch.optim.SGD(params, 11=0.001, momentum=0, dampening=0, weight decay=6,

nesterov=False, x, naximize=False, foreach=None, differentiable=False) [SOURCE]

Implements stochastic gradient descent (optionally with momentum).

input : v (Ir), 6y (params), f(#) (objective), A (weight decay),

i (momentum), 7 (dampening), nesterov, mazimize

fort=1to ... do

gt + Vafi(6e 1)
ifA#£0

13714

Variance Reduction in SGD - TL;:DR

Mini-batches and momentum reduce variance during optimization

Always use SGD with mini-batches and momentum

14714

