Variance Reduction in SGD

Recap: Stochastic Gradient Descent

Convergence depends on variance

$$\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\mathcal{D}}\left[\left(\frac{\partial l(\boldsymbol{\theta}|\mathbf{x},\mathbf{y})}{\partial \boldsymbol{\theta}} - \frac{\partial L(\boldsymbol{\theta}|\mathcal{D})}{\partial \boldsymbol{\theta}}\right)^2\right] \qquad \qquad \text{for epoch in range(n):} \\ \int_{\mathbf{y}=\nabla l(\boldsymbol{\theta}|\mathbf{x},\mathbf{y})}^{\mathbf{y}} d\mathbf{x} d\mathbf$$

Low variance: faster convergence

High variance: slower convergence

Pseudocode: Stochastic Gradient Descent

```
\theta \sim Init
for epoch in range(n):
  for (x, y) in dataset:
   J = \nabla I(\theta | x, y)
   \theta = \theta - \epsilon * J.mT
```

Variance Reduction: Mini-Batches

Average several gradients before taking step

Closer to GD

New hyper-parameter batch_size

- Vanilla SGD uses batch_size=1
- Vanilla GD uses batch_size=len(dataset)
- In practice, use a value in between

Stochastic Gradient Descent (with Mini-Batch)

```
for epoch in range(n):
    for i in range(len(dataset) // batch_size):
        J = 0
        batch = dataset[i * batch_size: (i + 1) * batch_size]
        for (x, y) in batch:
        J += \nabla l(\theta|x,y)
        \theta = \theta - \varepsilon * J.mT
```

SGD vs. SGD with Mini-batches

Stochastic Gradient Descent

```
for epoch in range(n):

for (x, y) in dataset:

J = \nabla l(\theta | x, y)

\theta = \theta - \epsilon * J.mT
```

Stochastic Gradient Descent (with Mini-Batch)

Variance of Mini-Batches

Variance of SGD with mini-batches

$$\sigma_{MB}^2 = \mathbb{E}_{\mathcal{B}_i} \left[\left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[rac{\partial}{\partial heta} l(heta | \mathbf{x}, \mathbf{y})
ight] - rac{\partial}{\partial heta} L(heta)
ight)^2
ight] = \mathbb{E}_{\mathcal{B}_i} \left[\left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[rac{\partial}{\partial heta} l(heta | \mathbf{x}, \mathbf{y})
ight]
ight)^2
ight] - \left(rac{\partial}{\partial heta} L(heta)
ight)^2$$

Variance of SGD

$$\sigma_{SGD}^2 = \mathbb{E}_{\mathcal{B}_i} \left[\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\left(\frac{\partial}{\partial heta} l(heta | \mathbf{x}, \mathbf{y}) - \frac{\partial}{\partial heta} L(heta)
ight)^2
ight] \right] = \mathbb{E}_{\mathcal{B}_i} \left[\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\left(\frac{\partial}{\partial heta} l(heta | \mathbf{x}, \mathbf{y})
ight)^2
ight] - \left(\frac{\partial}{\partial heta} L(heta)
ight)^2
ight]$$

Variance reduction

$$\begin{split} \sigma_{MB}^2 - \sigma_{SGD}^2 &= \mathbb{E}_{\mathcal{B}_i} \left[\left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\frac{\partial}{\partial \theta} l(\theta | \mathbf{x}, \mathbf{y}) \right] \right)^2 - \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\left(\frac{\partial}{\partial \theta} l(\theta | \mathbf{x}, \mathbf{y}) \right)^2 \right] \right] \\ &= \mathbb{E}_{\mathcal{B}_i} \left[\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{B}_i} \left[\frac{\partial}{\partial \theta} l(\theta | \mathbf{x}, \mathbf{y}) \right] - \frac{\partial}{\partial \theta} l(\theta | \mathbf{x}, \mathbf{y}) \right)^2 \right] \right] \geq 0 \end{split}$$

SGD vs. SGD with Mini-batches

SGD

Failed to load file

"/home/philkr/workspace/classes/deeplearning_v2/content/deep_networks/05_optimization/figures.ipynb/.lexeαe/ph

How Big Should Your Mini-Batch Be?

- As big as possible!
- Preferably the power of 2 (8, 16, 32, 64, ...)

Always Use Mini-Batches

Variance Reduction: Momentum

Average several consecutive gradients

Closer to GD

New hyper-parameter momentum

- Vanilla SGD uses momentum=0
- In practice, use momentum=0.9

Stochastic Gradient Descent (with

Momentum)

```
b = 0
for epoch in range(n):
  for (x, y) in dataset:
  b = \nabla l(\theta | x, y) + momentum * b
\theta = \theta - \epsilon * b.mT
```

Mini-Batches vs Momentum

Stochastic Gradient Descent (with Mini-Batch) Stochastic Gradient Descent (with

Momentum)

```
b = 0
for epoch in range(n):
  for (x, y) in dataset:
  b = \nabla l(\theta | x, y) + momentum * b
\theta = \theta - \epsilon * b.mT
```

Variance Reduction: Momentum

- Momentum reduces variance and accelerates convergence
- Formal proof.1.

SGD vs. SGD with Momentum

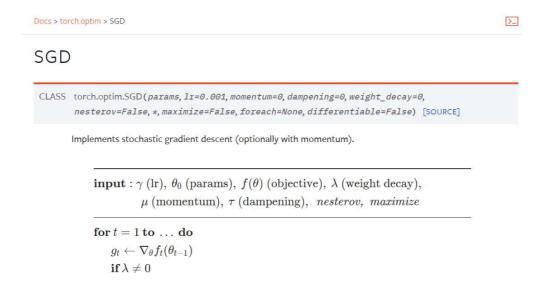
SGD

Failed to load file

"/home/philkr/workspace/classes/deeplearning_v2/content/deep_networks/05_optimization/figures.ipynb/.lexeαe/ph

What Should Your Momentum Value Be?

- Everyone uses momentum=0.9
- PyTorch defaults momentum=0, so don't forget to change



Variance Reduction in SGD - TL;DR

Mini-batches and momentum reduce variance during optimization

Always use SGD with mini-batches and momentum