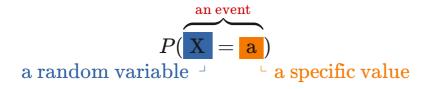

Basic Statistics

Basic Statistics

- Deep learning requires understanding basic
 Statistics
 - Introduction of notation
 - Review of basic concepts

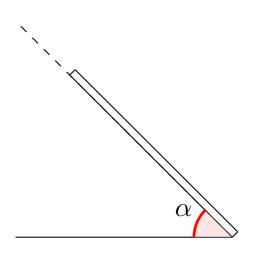
Probability: An Example


■ Toss a coin. Will it land on heads or tails?

Basic Notation

$$P(X = a)$$

Basic Notation: An Example



Probability Density

- What is $P(Y = \alpha)$?
 - not defined
- Cumulative probability: $P(\alpha_1 \leq Y < \alpha_2)$
- Probability density: $p(Y = \alpha)$

$$p(Y=lpha)=rac{P(lpha-\epsilon\leq Y$$

Unified Notation

Symbol	Description
P(x) = P(X = x)	Probability of a discrete event
P(x)=p(X=x)	Probability density of a continuous event

Properties of P(x)

A function P(x) that captures the probabilities of any value x.

roperty
Non-negativity

$$0 \leq P(x)$$

$$0 \le P(x) \le 1$$

Property

$$E_P[1] = \sum_x P(x) = 1$$

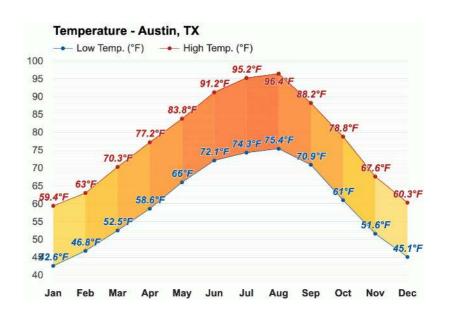
$$E_P[1] = \int P(x)dx = 1$$

Probability Distributions

$$P(x) = P(X = X)$$
a random variable \Box a specific value

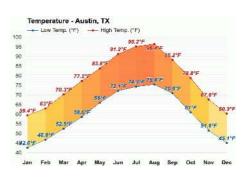
- What is P?
 - A function
 - lacksquare Discrete $P:\{c_1,c_2,\ldots,c_n\} o [0,1]$
 - lacksquare Continuous $P:\mathbb{R}
 ightarrow \mathbb{R}$
 - Called a probability distribution

Examples of Probability Distributions: Visual World



Examples of Probability Distributions: Weather

Three Types of Distribution


Data Generating

Empirical

Model

Basic Statistic Concepts

Expectation

Expectation - Short Forms

- $E_P[f(x)]$
- E[f(x)]
- $lacksquare E_P[f]$
- lacksquare $E\left[f
 ight]$

Linearity of Expectation

$$E\left[f(x)+g(x)
ight]=E\left[f(x)
ight]+E\left[g(x)
ight]$$
 $E\left[lpha f(x)
ight]=lpha E\left[f(x)
ight]$

Mean and Variance

Mean:

$$\mu_x = E_{x \sim P}\left[x
ight]$$

Variance:

$$\sigma_x^2 = Var_{x\sim P}\left[x
ight] = E_{x\sim P}\left[(x-\mu_x)^2
ight]$$

Unified Notations: A Word of Warning

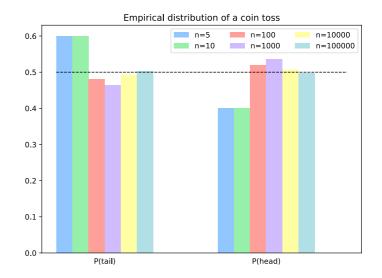
Discrete distribution	Continuous distribution
$Var_{x\sim P}\left[x ight]$ is always finite	$Var_{x\sim P}\left[x ight]$ can be infinite
P(X) always less than 1	P(X) can be larger than 1
	•••

Sampling

 $x \sim P$

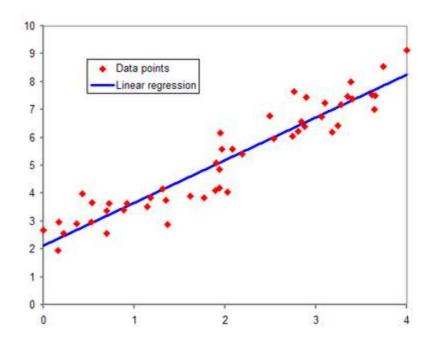
Example of Sampling

Example of Sampling

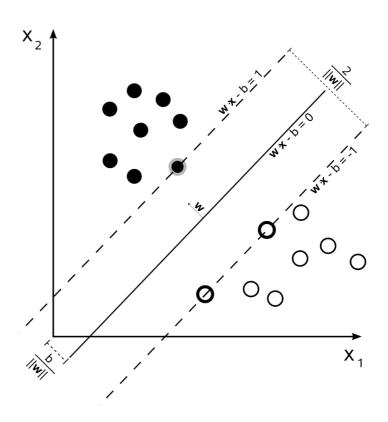


Example of Sampling

Bias in Samples


- Samples are always biased
- For infinite samples:empirical distribution = data generating distribution

Statistical Models


Regression Model

$$f_{ heta}: \mathbb{R}^n
ightarrow \mathbb{R}^d$$

Classification Model

$$f_{ heta}: \mathbb{R}^n o P(X), P(X) \subset \mathbb{R}^d$$

Statistical Model Summary

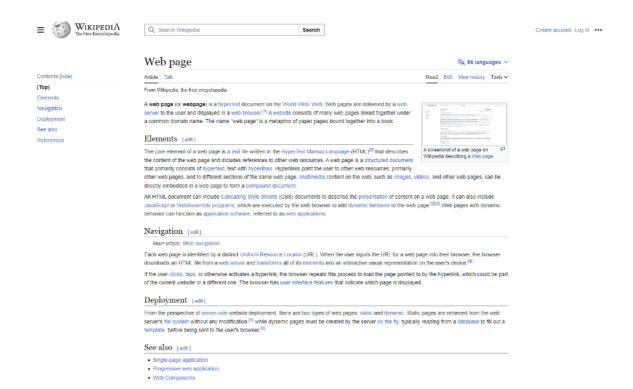
$$f_{ heta}:X o Y$$

- *X*: input space
- *Y*: output space
- θ : model parameters

In machine learning:

- Goal: find the optimal **parameter** θ
- How: learn from **data**

Data


Unlabeled Data:

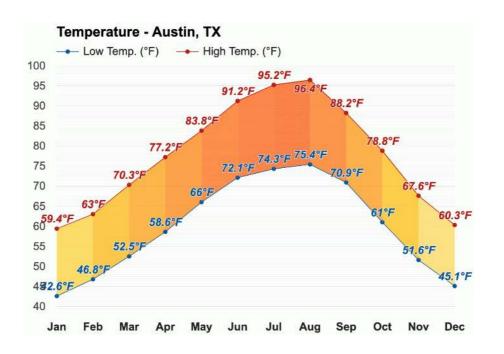
$$D = \{x_1, x_2, \ldots\} \qquad ext{where } x_i \sim P_D.$$

Labeled Data:

$$D = \{(x_1, l_1), (x_2, l_2), \ldots\} \qquad ext{where } (x_i, l_i) \sim P_D,$$

Examples of Data: Internet

Examples of Data: Personal Photo Collection



Examples of Data: Weather

Basic Statistics - TL;DR

Model: a function of the data to predict values $f_{ heta}:X o Y$

Expectation: measures the value of f weighted by probability P.

Variance: measures deviation from the mean