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Gradients



Deep Networks: Large Nested Functions
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f(x) = g  (g  (x))2 1

y = g  (x)1

f(x) = z = g  (y)2



Training Deep Networks: Compute Partial Derivatives
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Gradient: Partial Derivative of a Scalar Function
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Jacobian: Partial Derivative of a Vector-Valued Function

5 / 8

J  =f ∇  f(x) =x    =

∇  f  (x)x 1

∇  f  (x)x 2

…

∇  f  (x)x m

      

 ∂x  1

∂f  (x)1

 ∂x  1

∂f  (x)2

⋮

 ∂x  1

∂f  (x)m

 ∂x  2

∂f  (x)1

 ∂x  2

∂f  (x)2

⋮

 ∂x  2

∂f  (x)m

…

…

⋱

…

 ∂x  n

∂f  (x)1

 ∂x  n

∂f  (x)2

⋮

 ∂x  n

∂f  (x)m



Size of Gradients
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Gradients of 
size-  row vectors

Partial derivatives of 
size-  column vectors
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Chain Rule
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The Jacobian of :

g  :1 R →n Rm

g  :2 R →m Rk

f(x) = g  (g  (x))2 1

  

J  f = ∇  g  (g  (x))x 2 1

=     where y = g  (x)

J  ∈Rg  2
k×m

 ∇  g  (y)y 2

J  ∈Rg  1
m×n

 ∇  g  (x)x 1 2
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Gradients - TL;DR
Gradients are row vectors

Chain rule: gradient of a nested function is the (matrix) product of the gradients of its individual
functions


