
1 / 50

Overfitting

Recap: Developing a Model

Part 2

Part 3

Part 1

Collect data Look at data

Design model

⚙
Train

Apply model in the world

2 / 50

Perfect Training Accuracy Achieved

3 / 50

Our Data Is a Proxy for the Real World

4 / 50

Optimization Objective
Learn a model that works well on our dataset

Goal
Learn a model that works well in the real world

Dataset Splits

5 / 50

Training set
Learn model parameters

Validation set
Learn hyper-parameters

Test set
Measure real world performance

Training Set

6 / 50

Used to train all parameters of the model

Model will work very well on training set

Size: 60-80% of data

70%

15%

15%

Data Split

Train
Validation
Test

Validation Set

7 / 50

Used to determine how well the model works

Used to tune model and hyper-parameters

Size: 10-20% of data

70%

15%

15%

Data Split

Train
Validation
Test

Testing Set

8 / 50

Used to measure model performance on unseen
data

Used exactly once

Size: 10-20% of data

70%

15%

15%

Data Split

Train
Validation
Test

How Do We Split the Data?

9 / 50

Random Sampling Without Replacement

Warning: Correlated Data

10 / 501. Vasconcelos et al. A Systematic Overview of the Floral Diversity in Myrteae (Myrtaceae). Systematic Botany 2019. ↩

Flowers in a genus1. Images in a Video

https://www.researchgate.net/publication/335126354_A_Systematic_Overview_of_the_Floral_Diversity_in_Myrteae_Myrtaceae

Is Correlated Data Always Bad?

11 / 50

Correlated Data Is Bad When
model should generalize outside the correlated
data

Correlated Data Is Good When
model should perform well on the correlated
data
e.g. auto-labeling system

Dataset Splits

12 / 50

Training set
Learn model parameters

Validation set
Learn hyper-parameters

Test set
Measure real world performance

Overfitting

13 / 50

L(θ∣D) ≪train L(θ∣D)val

E [l(θ∣x, y)] ≪(x,y)∼D train
E [l(θ∣x, y)](x,y)∼D val

Detect overfitting with data splits

14 / 50

Validation set checks overfitting of parameters

Test set checks overfitting of hyper-parameters

i.e. number of layers, dimensions

θ

Is overfitting always bad?

15 / 50

Not Really

Only bad if the validation performance decreases

Why do we overfit?

16 / 50

Sampling bias

Fitting patterns that exist only in train set
Gradients from the same data points multiple
times

Why Do We Overfit?

17 / 50

Low Dimensional

D ≈data D ≈train D ≈valid D test

High Dimensional

D =data D =train D =valid D test

Can we overfit with infinite training data?

18 / 50

No

Never train on the same data instance

Preventing Overfitting: Early Stopping

19 / 50

Stop Training When Validation Accuracy Peaks

Early Stopping in Practice

20 / 50

No need for manual stop button

Every few epochs

Measure validation accuracy
Save your model

When Do We Overfit?

21 / 50

When we train on the same data multiple times

More Data Delays Overfitting

22 / 50

Practical Example: Large Language Models

23 / 50

Huge corpus of training data from the internet

Never sees the same data twice during training

Cannot overfit if epoch< 1

What if We Cannot Get More Data?

24 / 50

Data Augmentation

Make more data from our existing data
Randomly transform data during training
Reuse/Rephrase labels

"pink primose" "pink primose"

"pink primose" "pink primose"

Preventing Overfitting: Image Augmentations

Original Tint/hue Brightness

Crop Rotate Scale

Saturation Grey Flip

25 / 50

Training With Data Augmentation

26 / 50

Randomly augment every single iteration

Network never sees exact same data twice

augment

label: pink primose

pink primose

pink primose

Network

loss

Unsupervised Data Augmentation

27 / 501. Xie, Dai, Hovy, Luong, Le, "Unsupervised Data Augmentation for Consistency Training", NeurIPS 2020 ↩

Captures invariances on unseen and unlabeled
data1.

augment augment

pink primose

pink primose pink primose

Network Network

consistency

What if we still don’t have enough data?

28 / 50

Transfer Learning

Train model on large dataset (pre-training)
Continue training on target dataset (fine-tuning)

Big Dataset

Linear

ReLU

Linear

y

Car dataset

Linear

ReLU

Linear

y

Preventing Overfitting: Pre-Training

29 / 50

Computer vision

Supervised (e.g. ImageNet)
Self-supervised (e.g. MAE)

Natural Language Processing

Self-supervised (e.g. Wikipedia)

Pre-training / fine-tuning in practice

30 / 50

 Download a pre-trained model

⚙ Run a few training iterations on small dataset

Car dataset

Linear

ReLU

Linear

y

Why Does Transfer Learning Work?

31 / 50

Similar inputs

e.g. images, text, …
Transfer between tasks

Good initialization

Learned weights are initialized well
Better init allows for better training

Big Dataset

Linear

ReLU

Linear

y

Car dataset

Linear

ReLU

Linear

y

When to Use Transfer Learning?

32 / 50

Whenever possible!

In early experiments
Large pre-trained model exists

Where can we find models?

Github
Huggingface
Detectron2
…

Why Does Our Model Overfit? - Part I

33 / 50

Model exploit patterns that exist in training data

These patterns are not in the validation / test data

Not all activations overfit

 x

Linear

ReLU

Linear

y

Why Does Our Model Overfit? - Part I

34 / 50

Deeper layers overfit more

Relies on overfit activations from previous layers

 x

Linear

ReLU

Linear

y

Preventing Overfitting: Dropout

35 / 50

Method: Randomly remove activations

Reduces reliance on specific activations in previous layer

 x

Linear

ReLU

Dropout

Linear

y

Preventing Overfitting: Dropout

36 / 50

During training

With probability set activation to zero

During evaluation

Use all activations but scale by

α a (i)l

1 − α

 x

Linear

ReLU

Dropout

Linear

y

Dropout in Practice

37 / 50

A separate "layer" torch.nn.Dropout

During training

With probability set activation to zero
Scale activations by

During evaluation

Identity
Important: do not forget to call model.eval()!

α a (i)l

 1−α
1

 x

Linear

ReLU

Dropout

Linear

y

Where to Add Dropout?

38 / 50

Before any large fully connected layer

Before some 1x1 convolutions

Not before general convolutions

 x

Linear

ReLU

Dropout

Linear

y

Why Does Our Model Overfit? - Part II

39 / 50

Models becomes too complex and large
 x

Linear

ReLU

Linear

y

Idea 1: Smaller Model

40 / 50

✓ Smaller models overfit less

× Smaller models fit worse

× Smaller models generalize worse

 x

Network

y

Idea 2: Big Model With Regularization

41 / 50

Weight Decay

✓ Keep weights small (L2 norm)

✓ Keep weight at same magnitude

Other reasons to use weight decay

✓ Helps with exploding gradients

 x

Linear

ReLU

Linear

y

Idea 2: Big Model With Regularization

42 / 50

AdamW

 θ = θ - ϵ * (b.mT + decay * θ)

m, v, t = 0, 0, 1
for epoch in range(n):
 for (x, y) in dataset:
 J = ∇l(θ|x,y)
 m = (1-β_1) * J + β_1 * m
 v = β_2 * v + (1-β_2) * J.square()
 m = m / (1 - β_1^t)
 v = v / (1 - β_2^t)
 b = m / v.sqrt()

 t += 1

 x

Linear

ReLU

Linear

y

How to Use Weight Decay?

43 / 50

Parameter in optimizer

torch.optim.AdamW(lr=lr, weight_decay=1e-4)
torch.optim.SGD(lr=lr, weight_decay=1e-4)

 x

Linear

ReLU

Linear

y

Why Does Our Model Overfit? - Part III

44 / 50

Models are too complex x

Linear

ReLU

Linear

y

Preventing Overfitting: Ensembles

45 / 50

Train multiple small models

Average predictions of multiple models
 x

Network

y

 x

Network

y

 x

Network

y

Preventing Overfitting: Ensembles

46 / 50

Pre-deep learning

Use different subsets of training data

Deep learning

Use different init / data augmentations
Different local minima

 x

Network

y

 x

Network

y

 x

Network

y

Why Do Ensembles Work?

47 / 50

Fewer parameters / model

Each model overfits in its own way

Usually a 1-3% accuracy boost on most tasks

longer training

 x

Network

y

 x

Network

y

 x

Network

y

Why Do We Average Predictions?

48 / 501. https://en.wikipedia.org/wiki/Jensen's_inequality ↩

for a convex loss function and models

follows from Jenson’s inequality

 ≤

loss for ensemble

 E [l(f(x∣θ), y)](x,y)
M

1

i=1

∑
M

i

M

1

i=1

∑
M

loss for model i

 E [l(f(x∣θ), y)](x,y) i

l M

1.

https://en.wikipedia.org/wiki/Jensen%27s_inequality

When to Use Ensembles?

49 / 50

If you have the compute power

If you really need the last bit of accuracy

e.g. production, competitions

 x

Network

y

 x

Network

y

 x

Network

y

50 / 50

Overfitting - TL;DR
Split data into train / val / test sets

Overfitting: model performs well on the training set but poorly in the real world

Prevent overfitting with data - more data, augmenting data, and pre-train models

Prevent overfitting with modeling - dropout, weight decay, and ensembles

