Overfitting

Recap: Developing a Model

Part 1

Q

Collect data

Lo

Look at data

-}

Design model

—
<4—Part 2/ Train e

Apply model in the world
- pPatz——

2/50

Perfect Training Accuracy Achieved

Accuracy
o O =
oo O o

o
N

o
o

200 400 600 800
Iterations

3/50

Our Data Is a Proxy for the Real World

Optimization Objective Goal

Learn a model that works well on our dataset Learn a model that works well in the real world

4/50

Dataset Splits
Training set
Learn model parameters

Validation set

Learn hyper-parameters

Test set

Measure real world performance

5/50

Training Set

Used to train all parameters of the model

Model will work very well on training set

Size: 60-80% of data

Data Split

15%

Train
Validation
Test

70%

6/50

Validation Set

Used to determine how well the model works
Used to tune model and hyper-parameters

Size: 10-20% of data

Data Split

15%

Train
Validation
Test

70%

7750

Testing Set

Used to measure model performance on unseen
data

Used exactly once

Size: 10-20% of data

Data Split

15%

Train
Validation
Test

70%

8750

How Do We Split the Data?

Random Sampling Without Replacement

9/50

Warning: Correlated Data

Flowers in a genus!:

F secl Racemosas (~60)
E sect. Umbellatas (~500)
E seal. Speciosas (8]

E. sact. Schizovatomyrtuz (~15)

S . sect, Phplocaly (~20)

E. sect. Exceizae (1)

——— £ s=ct Pitathecium (~20) -

E. sgct. Eugenia (-20)

* E sect. Hexachlamys (5)

Esm wenia (~20) |
Myeisnes 57)
Peiium (12
Acea (2]
ptinamgn
e

Legrandiz (1}

Falloa 1]

*. Eugeninae

 Pimentinae*

(s

SR LN
*Wé%’?g

e

Images in a Video

10/50

https://www.researchgate.net/publication/335126354_A_Systematic_Overview_of_the_Floral_Diversity_in_Myrteae_Myrtaceae

Is Correlated Data Always Bad?

Correlated Data Is Bad When
= model should generalize outside the correlated

data

Correlated Data Is Good When
= model should perform well on the correlated

data

= e.g. auto-labeling system

11/50

Dataset Splits
Training set
Learn model parameters

Validation set

Learn hyper-parameters

Test set

Measure real world performance

12/50

Overfitting

L(9|Dtrain) << L(9|Dval)

E(an)NDtmin [l(e‘x7 y)] < E(X,Y)NDW [l(e‘x’ Y)]

1.0
Train 0
Val
0.9
>
)
©
2 0.8
O
<
0.7
0.6

200

400 600 800
Iterations

Train
Val

200

400 600 800
Iterations

13750

Detect overfitting with data splits

Validation set checks overfitting of parameters 6

Test set checks overfitting of hyper-parameters

o
©

= j.e. number of layers, dimensions

Accuracy
o
oo

Train
Val

o
N

o
o

200 400 600 800
Iterations

14/50

Is overfitting always bad?

Not Really

= Only bad if the validation performance decreases

o
©

Accuracy
o
oo

Train
Val

o
N

o
o

200 400 600 800
Iterations

15750

Why do we overfit?

Sampling bias

= Fitting patterns that exist only in train set

o
©

= Gradients from the same data points multiple

times

Accuracy
o
oo

Train
Val

o
N

o
o

200 400 600 800
Iterations

16/50

Why Do We Overfit?

Low Dimensional High Dimensional

Ddata ~ Dtrain ~ Dvalid ~ Dtest Ddata 7& Dtraz'n 7é Dvalid 7é Dtest

17750

Can we overfit with infinite training data?

No

= Never train on the same data instance

18750

Preventing Overfitting: Early Stopping

Stop Training When Validation Accuracy Peaks

=
o

o
©

Train
Val

©
N

Accuracy
o
oo

o
o

200 400 600 800
Iterations

19750

Early Stopping in Practice

No need for manual stop button

Every few epochs

o
©

= Measure validation accuracy
= Save your model

Train
Val

o
N

Accuracy
o
oo

o
o

200 400 600 800
Iterations

20/50

When Do We Overfit?

When we train on the same data multiple times

o
©

Train
Val

o
N

Accuracy
o
oo

o
o

200 400 600 800
Iterations

21/50

More Data Delays Overfitting

1.01

©
©
©
©

Accuracy
o
oo
Accuracy
o
oo

0.7 Train 0.7 Train
Val Val
0.6 - - - - 0.6 - ; ; :
200 400 600 800 200 400 600 800
Iterations Iterations

22/50

Practical Example: Large Language Models

Huge corpus of training data from the internet £ HuggingFace O Search models, datasets, users..

Never sees the same data twice during training

meta-llama/Meta-Llama-3-8B T < like 125k

Ca nnot ove rﬂt If < 1 e poc h Text Generation @ Transformers == Safetensors PyTorch

meta llama-3 Inference Endpoints = text-generation-inference

ish

llama facebook

se: llama3 (other)

How can | help you today?

23/50

What if We Cannot Get More Data?

Data Augmentation

= Make more data from our existing data
= Randomly transform data during training

= Reuse/Rephrase labels

[0Y
- 5 !
g é "._'.r
o . l

"pink primose" "bink pimose"

24/50

Preventing Overfitting: Image Augmentations

Original Tint/hue Brightness

i) A
T

25/50

Training With Data Augmentation

Randomly augment every single iteration

Network never sees exact same data twice

A ".r‘;_ Bt 2
pink primos'é
/ \
augment
v

pink primose

label: pink primose

J

Network

loss

26/50

Unsupervised Data Augmentation

Captures invariances on unseen and unlabeled
datal:

pink primosé

augment

augment

pihk primose pink primose
Network Network

consistency

1. Xie, Dai, Hovy, Luong, Le, "Unsupervised Data Augmentation for Consistency Training", NeurIPS 2020:@

27/50

What if we still don’t have enough data?

Transfer Learning

= Train model on large dataset (pre-training)

)

Big Dataset T - .
. ar adatase
= Continue training on target dataset (fine-tuning) &
Linear }
ReLU
Linear

28 /50

Preventing Overfitting: Pre-Training

Computer vision
= Supervised (e.g. ImageNet)

= Self-supervised (e.qg. MAE)

Natural Language Processing

= Self-supervised (e.g. Wikipedia)

o

WIKIPEDIA

The Free Encyclopedia

29/50

Pre-training / fine-tuning in practice
alio Download a pre-trained model

¢ Run a few training iterations on small dataset

)

Car datset

v

Linear

30/50

Why Does Transfer Learning Work?

Similar inputs
= e.g.images, text, ...

= Transfer between tasks

Good initialization

= Learned weights are initialized well

= Better init allows for better training

Big Dataset

v

Linear

RelLU

Linear

i

Car datset

v

Linear

31/50

When to Use Transfer Learning?

Whenever possible!

= In early experiments

= Large pre-trained model exists

Where can we find models?
= Github

= Huggingface

= Detectron2

a Hugging Face Q. Search models, datase

meta-llama/Meta-Llama-3-8B T

Text Generation @8 Transformers £ Safetensors PyTorch i llama facebook

meta llama-3 Inference Endpoints = text-generation-inference i lamas3 (other)

detectron2 - rusi

a pytorch-image-models

32/50

Why Does Our Model Overfit? - Part I

Model exploit patterns that exist in training data

& x

Linear

RelLU

These patterns are not in the validation / test data

Not all activations overfit

Linear

33/50

Why Does Our Model Overfit? - Part I

Deeper layers overfit more & x

Relies on overfit activations from previous layers
Linear

RelLU

Linear

34/50

Preventing Overfitting: Dropout

Method: Randomly remove activations

Reduces reliance on specific activations in previous layer

35/50

Preventing Overfitting: Dropout

During training

= With probability « set activation a;(%) to zero

During evaluation

= Use all activations but scaleby 1 — «

36/50

Dropout in Practice

A separate "layer" torch.nn.Dropout

During training
= With probability a set activation a;(%) to zero

= Scale activations by ﬁ

During evaluation

= Identity
= Important: do not forget to call model.eval()!

37/50

Where to Add Dropout?

Before any large fully connected layer

Before some 1x1 convolutions

Not before general convolutions

38/50

Why Does Our Model Overfit? - Part II

Models becomes too complex and large

& x

RelLU

Linear

39/50

Idea 1: Smaller Model

v Smaller models overfit less

& x

X Smaller models fit worse

X Smaller models generalize worse

40/ 50

Idea 2: Big Model With Reqgularization

Weight Decay & x
v Keep weights small (L2 norm)

Linear
v Keep weight at same magnitude

ReLU
Other reasons to use weight decay
v Helps with exploding gradients Linear

y

41750

Idea 2: Big Model With Reqgularization

AdamW & x

Linear

RelLU

Linear
06 =0 - € * (b.mT + decay * 0)

42 /50

How to Use Weight Decay?

Parameter in optimizer & x

torch.optim.AdamW(lr=1r, weight_decay=1e-4) i
torch.optim.SGD(1lr=1r, weight_decay=1e-4) Linear

RelLU

Linear

43 /50

Why Does Our Model Overfit? - Part III

Models are too complex & x

Linear

RelLU

Linear

44/ 50

Preventing Overfitting: Ensembles

Train multiple small models

& x & x & x
Average predictions of multiple models & =
[Network] [Netvvork]
v v
y y y

45 /50

Preventing Overfitting: Ensembles

Pre-deep learning
& x & x & x
= Use different subsets of training data v v
[Network] [Netvvork]
Deep learning v v
= Use different init / data augmentations y y y

s Different local minima

46 /50

Why Do Ensembles Work?

Fewer parameters / model

& x & x & x
Each model overfits in its own way v v
[Network] [Netvvork]
Usually a 1-3% accuracy boost on most tasks v v
= |onger training y y y

47 /50

Why Do We Average Predictions?

M M
1 1
By (57 D Fx[0),9)] < 22> By 1 (x161), y)]
1=1 1=1 N
N ~ s loss for model ¢

loss for ensemble

for a convex loss function [and M models

follows from Jenson's inequality :

1. https://en.wikipedia.org/wiki/Jensen's_inequality %]

teg + (L —tia

48 /50

https://en.wikipedia.org/wiki/Jensen%27s_inequality

When to Use Ensembles?

If you have the compute power & x & x & x

v v

Network [Network] [Network]

If you really need the last bit of accuracy

= e.g. production, competitions

49 /50

Overfitting - TL;DR

Split data into train / val / test sets
Overfitting: model performs well on the training set but poorly in the real world
Prevent overfitting with data - more data, augmenting data, and pre-train models

Prevent overfitting with modeling - dropout, weight decay, and ensembles

50/50

