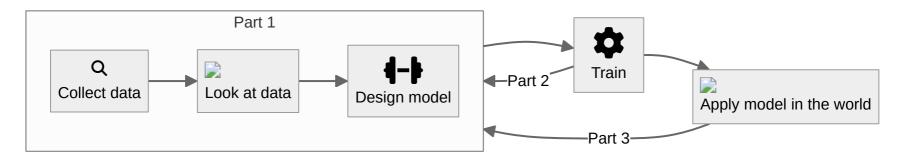
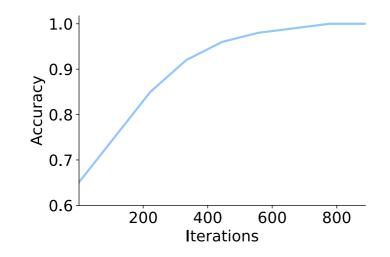
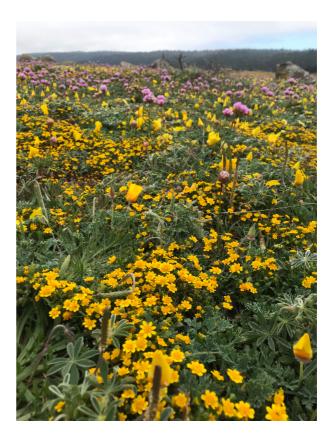
Overfitting

Recap: Developing a Model



Perfect Training Accuracy Achieved





Our Data Is a Proxy for the Real World

Optimization Objective

Learn a model that works well on our dataset

Goal

Learn a model that works well in the real world

Dataset Splits

Training set

Learn model parameters

Validation set

Learn hyper-parameters

Test set

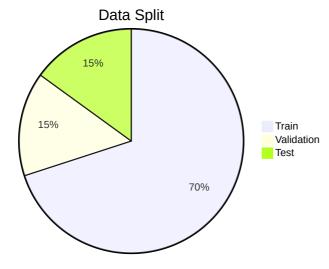
Measure real world performance

Training Set

Used to train all parameters of the model

Model will work very well on training set

Size: 60-80% of data

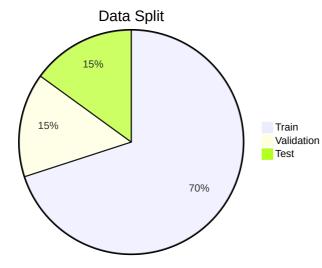


Validation Set

Used to determine how well the model works

Used to tune model and hyper-parameters

Size: 10-20% of data

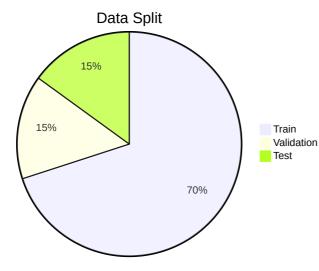


Testing Set

Used to measure model performance on unseen data

Used exactly once

Size: 10-20% of data

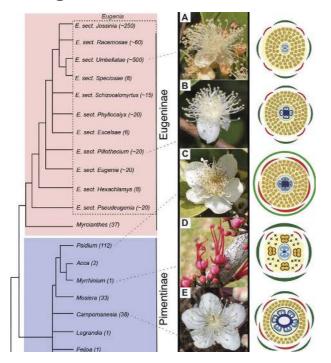


How Do We Split the Data?

Random Sampling Without Replacement

Warning: Correlated Data

Flowers in a genus.¹.



Images in a Video

Is Correlated Data Always Bad?

Correlated Data Is Bad When

 model should generalize outside the correlated data

Correlated Data Is Good When

- model should perform well on the correlated data
- e.g. auto-labeling system

Dataset Splits

Training set

Learn model parameters

Validation set

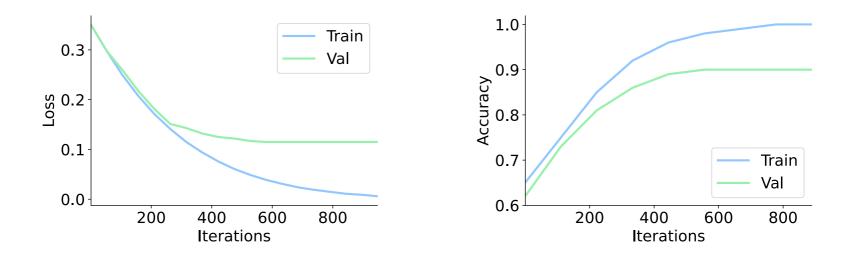
Learn hyper-parameters

Test set

Measure real world performance

Overfitting

 $egin{aligned} L(heta | \mathcal{D}_{train}) \ll L(heta | \mathcal{D}_{val}) \ & \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}_{train}}[l(heta | \mathbf{x}, \mathbf{y})] \ll \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}_{val}}[l(heta | \mathbf{x}, \mathbf{y})] \end{aligned}$

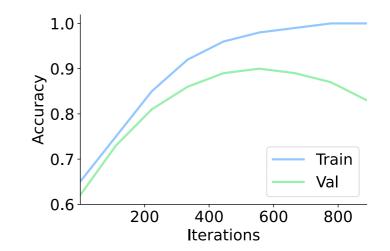


Detect overfitting with data splits

Validation set checks overfitting of **parameters** θ

Test set checks overfitting of hyper-parameters

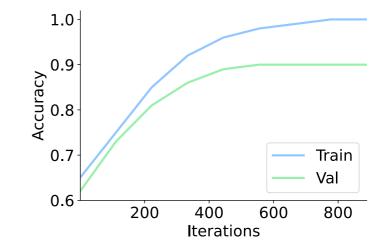
• i.e. number of layers, dimensions



Is overfitting always bad?

Not Really

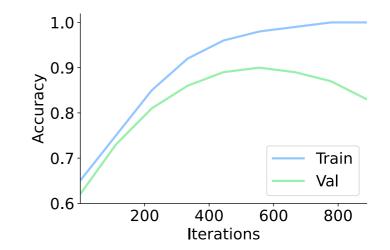
• Only bad if the validation performance decreases



Why do we overfit?

Sampling bias

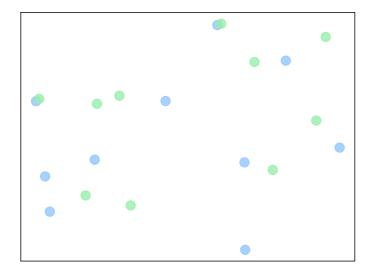
- Fitting patterns that exist only in train set
- Gradients from the same data points multiple times



Why Do We Overfit?

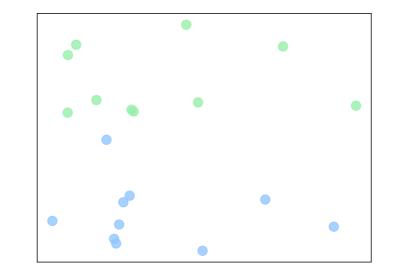
Low Dimensional

$$\mathcal{D}_{data} pprox \mathcal{D}_{train} pprox \mathcal{D}_{valid} pprox \mathcal{D}_{test}$$



High Dimensional

$$\mathcal{D}_{data}
eq \mathcal{D}_{train}
eq \mathcal{D}_{valid}
eq \mathcal{D}_{test}$$



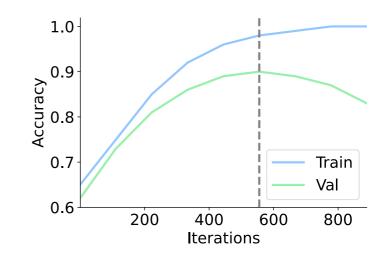
Can we overfit with infinite training data?

No

• Never train on the same data instance

Preventing Overfitting: Early Stopping

Stop Training When Validation Accuracy Peaks

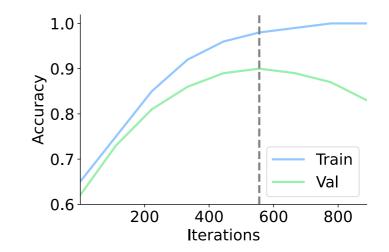


Early Stopping in Practice

No need for manual stop button

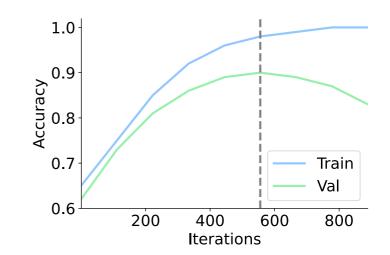
Every few epochs

- Measure validation accuracy
- Save your model

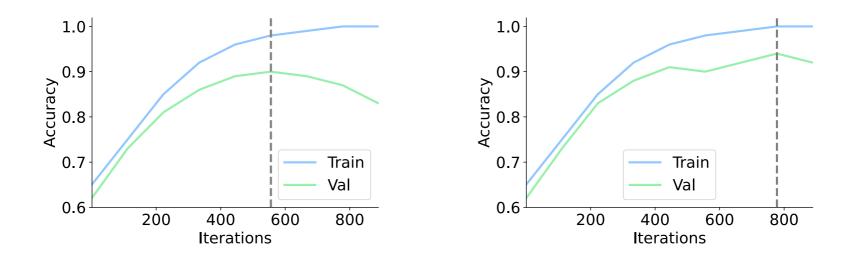


When Do We Overfit?

When we train on the same data multiple times



More Data Delays Overfitting



Practical Example: Large Language Models

Huge corpus of training data from the internet

Never sees the same data twice during training

Cannot overfit if < 1 epoch

🙁 н	ugging Face	Q Search models, datasets, users						
🗠 me	ta-llama/ Me	ta-Llama-3	-88 ⊡ ♡lik	e 1.25k				
	ta-llama/ Me ext Generation	ta-Llama-3	-8B ⊡ ♡lik & Safetensors	e 1.25k	English	llama	facebook	

How can I help you today?

What if We Cannot Get More Data?

Data Augmentation

- Make more data from our existing data
- Randomly transform data during training
- Reuse/Rephrase labels

"pink primose"

"pink primose"

"pink primose"

"pink primose"

Preventing Overfitting: Image Augmentations

Rotate

Saturation

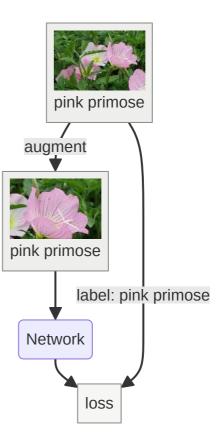
Brightness

Scale

Training With Data Augmentation

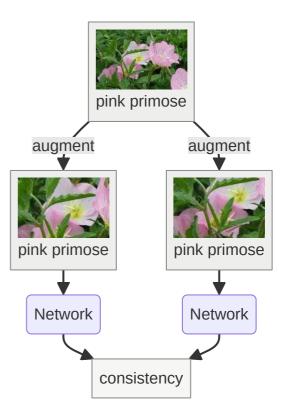
Randomly augment every single iteration

Network never sees exact same data twice



Unsupervised Data Augmentation

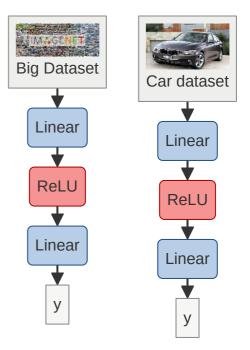
Captures invariances on unseen and unlabeled data^{1.}



What if we still don't have enough data?

Transfer Learning

- Train model on large dataset (pre-training)
- Continue training on target dataset (fine-tuning)



Preventing Overfitting: Pre-Training

Computer vision

- Supervised (e.g. ImageNet)
- Self-supervised (e.g. MAE)

Natural Language Processing

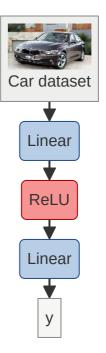
Self-supervised (e.g. Wikipedia)

WIKIPEDIA The Free Encyclopedia

Pre-training / fine-tuning in practice

Download a pre-trained model

Run a few training iterations on small dataset



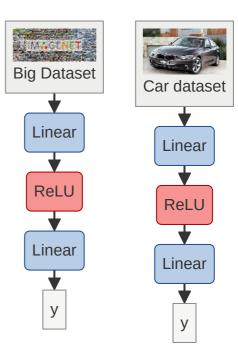
Why Does Transfer Learning Work?

Similar inputs

- e.g. images, text, ...
- Transfer between tasks

Good initialization

- Learned weights are initialized well
- Better init allows for better training



When to Use Transfer Learning?

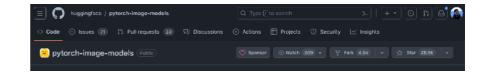
Whenever possible!

- In early experiments
- Large pre-trained model exists

Where can we find models?

- Github
- Huggingface
- Detectron2
- ...

🔗 Hugging Face	Q Search mod	Q Search models, datasets, users					
🗠 meta-llama/ Me	ta-Llama-3	-88 ⊡ ♡lik	e 1.25k				
Text Generation	E Transformers	Safetensors	Ø PyTorch	🔮 English	llama	facebook	
meta llama-3 🕩 Inference Endpoints		👻 text-genera	tion-inference	🏛 License: llama3 (other)			

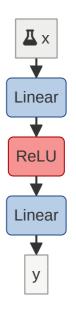


Why Does Our Model Overfit? - Part I

Model exploit patterns that exist in training data

These patterns are not in the validation / test data

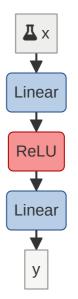
Not all activations overfit



Why Does Our Model Overfit? - Part I

Deeper layers overfit more

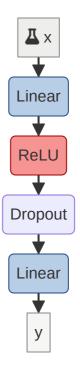
Relies on overfit activations from previous layers



Preventing Overfitting: Dropout

Method: Randomly remove activations

Reduces reliance on specific activations in previous layer



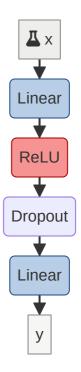
Preventing Overfitting: Dropout

During training

• With probability lpha set activation $a_l(i)$ to zero

During evaluation

- Use all activations but scale by 1-lpha



Dropout in Practice

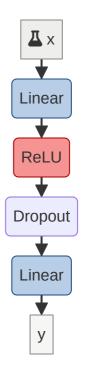
A separate "layer" torch.nn.Dropout

During training

- With probability lpha set activation $a_l(i)$ to zero
- Scale activations by $\frac{1}{1-\alpha}$

During evaluation

- Identity
- Important: do not forget to call model.eval()!

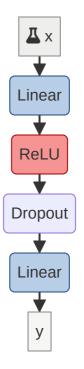


Where to Add Dropout?

Before any large fully connected layer

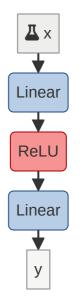
Before some 1x1 convolutions

Not before general convolutions



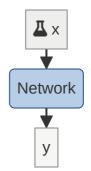
Why Does Our Model Overfit? - Part II

Models becomes too complex and large



Idea 1: Smaller Model

- ✓ Smaller models overfit less
- × Smaller models fit worse
- × Smaller models generalize worse



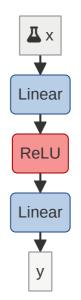
Idea 2: Big Model With Regularization

Weight Decay

- ✓ Keep weights small (L2 norm)
- ✓ Keep weight at same magnitude

Other reasons to use weight decay

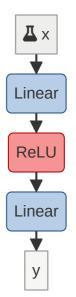
✓ Helps with exploding gradients



Idea 2: Big Model With Regularization

AdamW

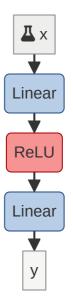
```
m, v, t = 0, 0, 1
for epoch in range(n):
    for (x, y) in dataset:
        J = \nabla l(\theta | x, y)
        m = (1-\beta_1) * J + \beta_1 * m
        v = \beta_2 * v + (1-\beta_2) * J.square()
        m = m / (1 - \beta_1^t)
        v = v / (1 - \beta_2^t)
        b = m / v.sqrt()
        \theta = \theta - \epsilon * (b.mT + decay * \theta)
        t += 1
```



How to Use Weight Decay?

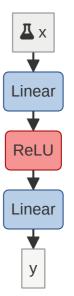
Parameter in optimizer

torch.optim.AdamW(lr=lr, weight_decay=1e-4)
torch.optim.SGD(lr=lr, weight_decay=1e-4)



Why Does Our Model Overfit? - Part III

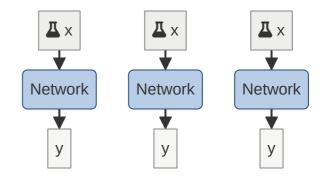
Models are too complex



Preventing Overfitting: Ensembles

Train multiple small models

Average predictions of multiple models



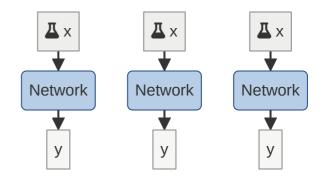
Preventing Overfitting: Ensembles

Pre-deep learning

Use different subsets of training data

Deep learning

- Use different init / data augmentations
- Different local minima



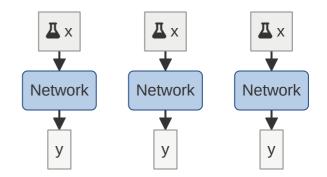
Why Do Ensembles Work?

Fewer parameters / model

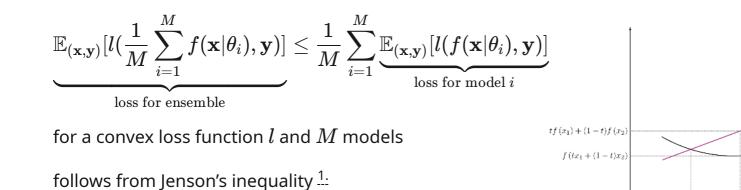
Each model overfits in its own way

Usually a 1-3% accuracy boost on most tasks

longer training



Why Do We Average Predictions?



f(x)

 x_2

 x_{\pm}

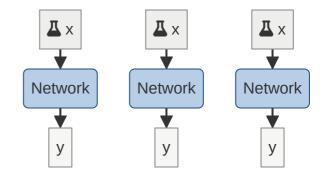
 $tx_1 + (1-t)x_2$

When to Use Ensembles?

If you have the compute power

If you really need the last bit of accuracy

• e.g. production, competitions



Overfitting - TL;DR

Split data into train / val / test sets

Overfitting: model performs well on the training set but poorly in the real world Prevent overfitting with data - more data, augmenting data, and pre-train models Prevent overfitting with modeling - dropout, weight decay, and ensembles