Normalizations

Recap - A Simple Example

n-layer linear network

- No non-linearities
- Scalar weight $w_i \in \mathbb{R}, w_i \geq 0$
- lacksquare Bias $b_i \in \mathbb{R}$

Major problem: vanishing gradients

$$\|
abla_{W_i}y\| o 0$$
 for large n

Inconvenience: vanishing activations

$$a_n = \prod_{k=1}^n W_k x + \underbrace{\cdots}_{ ext{bias}}$$

Normalization

Rescale and shift activations

$$\hat{a}_k = rac{a_k - \mu_k}{\sigma_k}$$

Exploding activation $\|a_k\| o \infty$:

$$\sigma_kpprox \|a_k\| o\infty$$
 and $\|\hat{a}_k\|pprox 1$

Vanishing activation $\|a_k\| o 0$:

$$\sigma_kpprox \|a_k\| o 0$$
 and $\|\hat{a}_k\|pprox 1$

Normalization

Rescale and shift activations

$$\hat{a}_k = rac{a_k - \mu_k}{\sigma_k}$$

Where do μ_k and σ_k come from?

Batch Normalization

Rescale and shift activations per channel

$$\hat{a}_k = rac{a_k - \mu_k}{\sigma_k}$$

Compute μ_k and σ_k from training batch (on the fly)

Batch Normalization

Rescale and shift activations *per channel*

- lacksquare mean μ_c
- stdev σ_c

$$\hat{\mathbf{a}}_{b,x,y,c} = rac{\mathbf{a}_{b,x,y,c} - \mu_c}{\sigma_c}$$

where

$$\mu_c = rac{1}{BWH} \sum_{k,x,y} \mathbf{a}_{b,x,y,c}$$

$$\sigma_c^2 = rac{1}{BWH}\sum_{k,x,y}(\mathbf{a}_{b,x,y,c} - \mu_c)^2$$

What Does Batch Normalization Do?

The Good:

- Regularizes the network
- Handles badly scaled weights

The Bad:

Mixes gradient info between samples

In General:

- Large batch sizes work better
- More stable mean and stdev estimates

Batch Norm at Test Time

Issue: There is no batch at test time

Solution: Use training mean and stdev

- Keep track of mean and stdev during training
- Implemented via running averages

Layer Normalization

Rescale and shift activations per feature

$$\hat{a}_k = rac{a_k - \mu_k}{\sigma_k}$$

Compute μ_k and σ_k across each data element

Layer Normalization

Rescale and shift activations per feature

- lacksquare mean μ_b
- stdev σ_b

$$\hat{\mathbf{a}}_{b,x,y,c} = rac{\mathbf{a}_{b,x,y,c} - \mu_b}{\sigma_b}$$

where

$$\mu_b = rac{1}{WHC} \sum_{x,y,c} \mathbf{a}_{b,x,y,c}$$

$$\sigma_b^2 = rac{1}{WHC} \sum_{x,y,c} (\mathbf{a}_{b,x,y,c} - \mu_b)^2$$

What Does Layer Normalization Do?

Comparison to Batch Norm

No Summary Statistics

Training and testing are the same

In General:

- Works well for sequence models
- Does not normalize activations individually

Group Normalization

Rescale and shift activations per group

- lacksquare mean $\mu_{k,g}$
- stdev $\sigma_{k,q}$

$$\mathbf{a}_{b,x,y,c} = rac{\mathbf{a}_{b,x,y,c} - \mu_{k,g}}{\sigma_{k,g}}$$

where

$$g = \lfloor c/G
floor$$

$$\mu_{k,g} = rac{1}{WHG} \sum_{c=gG}^{(g+1)G-1} \sum_{x,y} \mathbf{a}_{b,x,y,c}$$

$$\sigma_{k,g}^2 = rac{1}{WHG} \sum_{c=gG}^{(g+1)G-1} \sum_{x,y} (\mathbf{a}_{b,x,y,c} - \mu_{k,g})^2$$

What Does Group Normalization Do?

Group Normalization Comparison

Key Characteristics

- Splits channels into groups
- Layer norm is a special case of group norm (G=1)

In Practice:

Common in UNet/diffusion architectures

Local response normalization

"Generalization" of group norm

- Hyperparameters α and β
- $\mathbf{a} \in \mathbb{R}^{B imes W imes H imes C}$

$$\hat{\mathbf{a}}_{b,x,y,c} = \mathbf{a}_{b,x,y,c} (\gamma + rac{lpha}{n} \sum_{c'=c-n/2}^{c+n/2} \mathbf{a}_{b,x,y,c}^2)^{-eta}$$

Differences Between LRN and GN

$$\mathbf{a}_{b,x,y,c} = rac{\mathbf{a}_{b,x,y,c} - \mu_{k,g}}{\sigma_{k,g}}$$

- Normalize over all spatial locations
- Subtract mean

Local response normalization

$$\hat{\mathbf{a}}_{b,x,y,c} = \mathbf{a}_{b,x,y,c} (\gamma + rac{lpha}{n} \sum_{c'=c-n/2}^{c+n/2} \mathbf{a}_{b,x,y,c}^2)^{-eta}$$

- More flexible parametrization
- Sliding window

Where to Add Normalization?

Option A: after linear

Option B: after activation

Option A: Post-Linear Normalization

Output activation mean $\hat{\mu}_k=0$

• No need for bias b_c in linear layer

Issue: about half activations negative

Zero-ed out by ReLU

Solution: learn a scale s_c and bias b_c after norm

Option B: Post-Activation Normalization

Scale s_c and bias b_c optional

Where to Add Normalization?

Both work

Option A: more popular

Option B: easier

- Scale and bias optional
- Layer unchanged

What Normalization to Use?

1. Try LayerNorm

2. Try GroupNorm

- 3. Try BatchNorm
- Most suitable for image-like data
- Do **NOT** use on vanilla linear layers

Why Does Normalization Work?

Normalization fixes vanishing activations

- Handle badly scaled weights
- Activations cannot vanish (assumming $b_c=0$)
- "Eigenvalues" are close to 1

The same holds true for gradients $\frac{1}{2}$.

How Deep Can These Networks Go?

With normalization

Max depth 20-30

Normalization - TL;DR

Normalizations handle vanishing gradients