Residual Connections



Deep Networks
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What Happens to Deeper Networks?

They don’t perform well!
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What Happens to Deeper Networks?

They don’t even train well!
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20 vs 50 Layers Networks

20 layers with identity-blocks
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Why don’t they train well?

Initial updates are hard

= [Initial weights: Random Gaussian

= After a few layers:

Inputs look Gaussian (random noise)

Gradients look Gaussian (random noise)
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Solution; Residual Connections

Parameterize layers as f(x) x + g(x)

f(x) =x+g(x)
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Fun Fact

Backward graph is symmetric
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Residual Networks
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How Well Do Residual Connections Work?

& x
Can train networks of up to 1000 layers ¢
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What if Input and Output Are Not the Same Size?

Add a linear layer to reshape T

Design network with same input.shape =
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Why Do Residual Connection Work? - Practical Answer

Gradient Travels Further zy
= Another way to prevent vanishing gradients

\

Reuse of Patterns
= Only update patterns

Can even drop some layers!:
= Dropping some layers still does well

= Asweights = 0, model = identity Ty

1. Gao Huang et al., "Deep Networks with Stochastic Depth", ECCV 2016 [Z] 12714



Why Do Residual Connection Work? - Theoretical Answer

Optimization 1:2: z)

= Invertibility

= Model capacity: very wide

= Simplified "loss landscape" for SGD

\
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Residual TL;DR

Go deeper with residual connections

Residuals + Normalization fixes vanishing activations and gradients
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