Residual Connections

Deep Networks

Without normalization

Max depth 10-12

With normalization

Max depth 20-30

What Happens to Deeper Networks?

They don't perform well!

Kaiming He et al., "Deep Residual Learning for Image Recognition", CVPR 2016 🔁

What Happens to Deeper Networks?

They don't even train well!

20 vs 50 Layers Networks

20 layers with identity-blocks

 x_1 Linear ReLU f(x)=xReLU Linear ReLU x_{l+3}

Why don't they train well?

Initial updates are hard

- Initial weights: Random Gaussian
- After a few layers:
 - Inputs look Gaussian (random noise)
 - Gradients look Gaussian (random noise)

Solution: Residual Connections

Parameterize layers as

Fun Fact

Backward graph is symmetric

Residual Networks

How Well Do Residual Connections Work?

Can train networks of **up to 1000 layers**

What if Input and Output Are Not the Same Size?

Add a linear layer to reshape

 Design network with same input.shape = output.shape for most blocks

Why Do Residual Connection Work? - Practical Answer

Gradient Travels Further

Another way to prevent vanishing gradients

Reuse of Patterns

Only update patterns

Can even drop some layers¹.

- Dropping some layers still does well
- As weights \implies 0, model \implies identity

Why Do Residual Connection Work? - Theoretical Answer

Optimization <u>1.2.</u>

- Invertibility
- Model capacity: very wide
- Simplified "loss landscape" for SGD

1. Simon S. Du, et al., "Gradient Descent Finds Global Minima of Deep Neural Networks", ICML 2019 🔁

2. Moritz Hardt and Tengyu Ma, "Identity matters in deep learning", ICLR 2017 🔁

Residual TL;DR

Go deeper with residual connections

Residuals + Normalization fixes vanishing activations and gradients