Vanishing and Exploding Gradients

A Simple Example

n-layer linear network

- No non-linearities
- Scalar weight $w_i \in \mathbb{R}, w_i \geq 0$
- lacksquare Bias $b_i \in \mathbb{R}$

Activations

Assume $w_i pprox w \quad orall_i$

Case 1: w < 1

- $w^n x o 0$ for large n
- lacksquare Vanishing inputs: $a_n pprox rac{b}{1-w}$

Case 2: w = 1

 $a_n = x + nb$

Case 3: w > 1

- Activation n: $w^n \to \infty$
- Exploding activations

Layer	Activation
l = 1	$a_1pprox wx+b$
l=2	$a_2pprox w^2x+(w+1)b$
l=3	$a_3pprox w^3x+(w^2+w+1)b$
l=n	$a_npprox w^nx+b\displaystyle{\sum_{k=0}^{n-1}}w^k$

Gradients

Assume $w_i pprox w \quad orall_i$

Case 1: w < 1

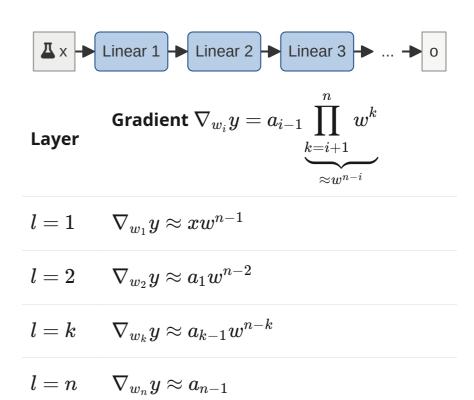
lacksquare Gradient vanishes: $w^{n-i}
ightarrow 0$ for large n

Case 2: w = 1

ullet Gradient stable: $abla_{w_i} y = a_{i-1}$

Case 3: w > 1

- lacksquare Gradient explodes: $w^{n-i-1} o\infty$ for large n l=k $abla_{w_k}ypprox a_{k-1}w^{n-k}$
- In practice: exploding activations ightarrow NaN



Simple Example - Summary



w < 1

- Training stable
- Vanishing activations
- Vanishing gradients
- Network does not train

w = 1

- Training stable
- Network does train
- Nearly impossible to maintain

w > 1

- Training explodes
- Exploding activations
- Exploding gradients
- Network does not train

General Linear Networks - Exploding Gradients

Weights: $W_i \in \mathbb{R}^{n imes n}$

Exploding activations

$$\|a_k\|\!=\!\|\prod_{i=1}^k W_k x\|pprox \|\prod_{i=1}^k W_k\|\|x\|\!
ightarrow\!\infty$$

Exploding gradients

$$\|
abla_{W_k}y\|pprox \|a_{k-1}\|\|\prod_{i=k+1}^n W_i\|\|y\| o\infty$$

- lacksquare Network poorly initialized $\|W_i\|>1$
- Learning rate too large
- Historically in recurrent networks

Handling Exploding Gradients

W Symptoms

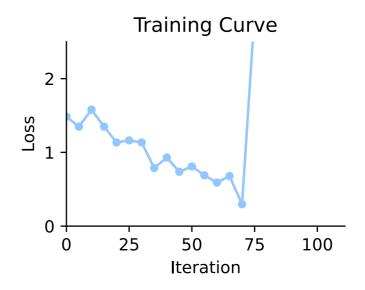
• Weights or loss are ∞ or NaN

Q Diagnosis

- Plot weight norms per layer
- Plot gradient norms per layer

X Remedy

- Reduce learning rate
- *Rarely:* change initialization



General Linear Networks - Vanishing Gradients

Weights: $W_i \in \mathbb{R}^{n imes n}$

Vanishing inputs

$$\|a_k\| \! = \! \|\prod_{i=1}^k W_k x\| \leq \prod_{i=1}^k \|W_k\| \|x\| o 0$$

Vanishing gradients

$$\|
abla_{W_k}y\| \leq \|a_{k-1}\| \prod_{i=k+1}^n \|W_i\| \|y\| o \infty$$

Occurs in almost all deep networks

Handling Vanishing Gradients

W Symptoms

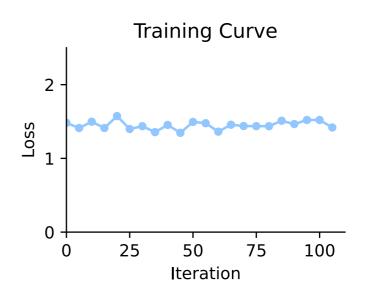
Network does not train

Q Diagnosis

- Train with 0 learning rate and compare
- Plot weight norms per layer
- Plot gradient norms per layer

X Remedy

- Happens to all but the shallowest networks
- Tune learning rate
- Change network architecture



Vanishing and Exploding Gradients - TL;DR

Vanishing gradients occur in most deep networks

Exploding gradients lead to NaN; fixed by lower learning rate