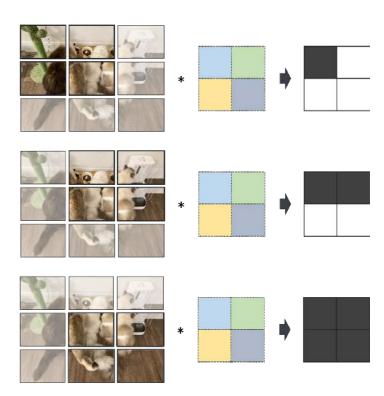
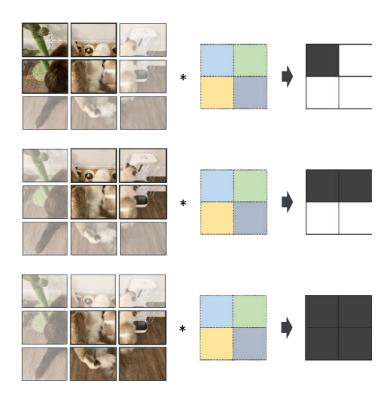
Transformers

Recap: Convolution


Input: $x \in \mathbb{R}^{C_1 imes H imes W}$

Output: $y \in \mathbb{R}^{C_2 imes (H-h+1) imes (W-w+1)}$

Parameters:


- ullet Kernel: $\omega \in \mathbb{R}^{C_1 imes C_2 imes h imes w}$
- lacksquare Bias: (optional) $b \in \mathbb{R}^{C_2}$

$$\underbrace{y_{i,j,k}}_{\text{output}} = \underbrace{b_i}_{\text{bias}} + \sum_{l=1}^{C_1} \sum_{m=0}^{h-1} \sum_{n=0}^{w-1} \underbrace{x_{l,j+m,k+n}}_{\text{input}} \cdot \underbrace{\omega_{i,l,m,n}}_{\text{kernel}}$$

Recap: Convolution

Good at parsing relatively **structured** patterns

A New Problem

Sentiment Analysis for Movie Reviews

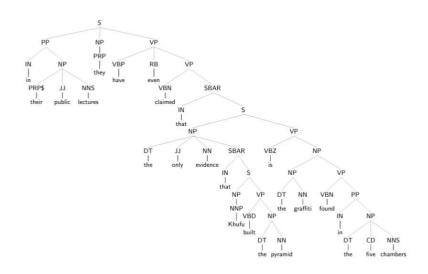
Predict if review is positive or negative

UMy kid likes this movie

• My little kid likes this animated movie

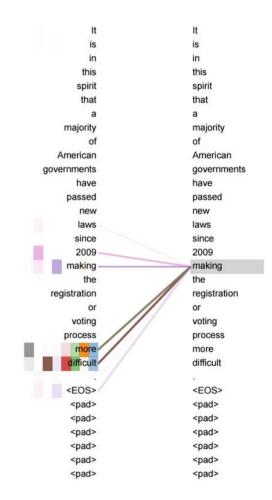
My kid does not like this movie

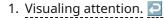
Real-world examples: reviews on IMDB.1.


How Is the Task Different From Previous Examples

Images

- Fixed input (resolution)
- Fixed structure


Language


- Variable length
- Diverse structure (tree syntax¹:)

Solution: Transformer

A deep network based on the *attention* mechanism...

