Applications of Transformers



Recap: Applying Transformers to Sentiment Analysis

Input: a set of tokens {x;}

= prepended by a special token [CLS]

Output: another set of tokens {y;}

Transformer: stack of NV transformer layers
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What Else Can We Do With Transformers?

Machine Translation

Input: a sentence in a given language

Output: translation to another language

English: I love deep learning

Chinese: XEFEEH
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Challenges of Machine Translation

A Length of input != length of output

A Hard to produce coherent output tokens
simultaneously
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Auto-Regressive Prediction

Predict one token (word) at a time Br mult=4 />
1. P(S’1|X1,X2,X3,X4,X5,X6)
2. P(g’2|X1,X2,X3,X4,X5,X6,5’1)

~ hod -~ ‘l*'\vﬁ‘/
3'})CY3LX17X97X%7Ji4ﬁx5ﬂx67yiayb)
4. P(Y4|X1,X2,X3,X4,X5,X6,yl,y'2,y?,)

Until Srt hits an end-of-sequence (EOS) token

Here, p(¥,|x1, Xa, X3, X4, X5, X6, Y1, Y2, ¥, 1) is modeled by an N-layer Transformer
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Masked Attention

Output sequence is offset by one compared to input

Model can easily cheat by looking at future tokens
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Masked Attention

O = MaskedAttention(Q, K, V)

QKT hines
— SOftmaX \/5 _|_ M V embed embed embed embed embed embed
where the mask M is defined by
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Auto-Regressive Prediction

Test Time:

Sample one token (word) at a time

P(yt|x1,x2,x3,X4,x5,x6,y1,y2, e 7Yt—1) \u,f/,

until j'rt hits an end-of-sentence (<e0S>) token

® Very slow during training
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Teacher Forcing

Fast training

=  Condition on ground truth inputs
= Different from what is seen during generation (sampling vs ground truth)
= Fine in practice

= Parallel training of all predictions

P(Yt|X1,X2,X3>X4,X5,X6,}’0,Y1,"' ,Yt—1)

Yo is a special end-of-sentence (<eE0S> = start-of-translation) token
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Transformer Layer With Masked Attention
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Types of Transformers

Decoder-only

Masked auto-regressive prediction

Encoder-only

No prediction, just understanding

Encoder-Decoder

Image credit https://github.com/Mooler0410/LLMsPracticalGuide
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https://github.com/Mooler0410/LLMsPracticalGuide

Types of Tokens

Tokens

words or sub-words (tokenization)
visual (e.g. image patches)

discrete or continuous

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

- dddd daddds

# Hxtra learnable
[class] embedding Linear Projection of Flattened Patches

T

Image credit: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Z]
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Applications of Transformers - TL;DR

Transformers are suitable language models
Auto-regressive next word prediction
Efficient parallel training through teacher forcing

Transformers process many forms of tokens
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