# Applications of Transformers

# Recap: Applying Transformers to Sentiment Analysis

**Input:** a set of tokens  $\{\mathbf{x}_i\}$ 

prepended by a special token [CLS]

**Output:** another set of tokens  $\{y_i\}$ 

**Transformer:** stack of N transformer layers



### What Else Can We Do With Transformers?

Machine Translation

**Input**: a sentence in a given language

**Output**: translation to another language

**▲**English: I love deep learning

All Chinese: 我愛深度學習



## Challenges of Machine Translation

▲ Length of input != length of output

▲ Hard to produce coherent output tokens simultaneously



### **Auto-Regressive Prediction**

Predict one token (word) at a time

1. 
$$P(\mathbf{\tilde{y}}_1|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6)$$

2. 
$$P(\tilde{\mathbf{y}}_2|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\tilde{\mathbf{y}}_1)$$

3. 
$$P(\mathbf{\tilde{y}}_3|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{\tilde{y}}_1,\mathbf{\tilde{y}}_2)$$

4. 
$$P(\tilde{\mathbf{y}}_4|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\tilde{\mathbf{y}}_1,\tilde{\mathbf{y}}_2,\tilde{\mathbf{y}}_3)$$

• • •

Until  $\mathbf{\tilde{y}}_t$  hits an end-of-sequence (EOS) token

 $\mathcal{G}_t$  into all that of sequence (203) token

Br mult=4 />



Here,  $p(\tilde{\mathbf{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\tilde{\mathbf{y}}_1,\tilde{\mathbf{y}}_2,\tilde{\mathbf{y}}_{t-1})$  is modeled by an N-layer Transformer

### **Masked Attention**

Output sequence is offset by one compared to input

Model can easily cheat by looking at future tokens



### **Masked Attention**

$$egin{aligned} \mathbf{O} &= \operatorname{MaskedAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \ &= \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{C}} + \mathbf{M}
ight)\mathbf{V} \end{aligned}$$

where the mask  ${f M}$  is defined by

$$\mathbf{M} = egin{bmatrix} 0 & -\infty & \cdots & -\infty \ 0 & 0 & \cdots & -\infty \ dots & dots & dots \ 0 & 0 & \cdots & 0 \end{bmatrix}$$



## Auto-Regressive Prediction

#### **Test Time:**

Sample one token (word) at a time

$$P(\mathbf{\tilde{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{\tilde{y}}_1,\mathbf{\tilde{y}}_2,\cdots,\mathbf{\tilde{y}}_{t-1})$$

until  $\mathbf{ ilde{y}}_t$  hits an end-of-sentence (<EOS>) token



© Very slow during training

### **Teacher Forcing**

#### **Fast training**

- Condition on ground truth inputs
- Different from what is seen during generation (sampling vs ground truth)
- Fine in practice
- Parallel training of all predictions

$$P(\mathbf{\tilde{y}}_t|\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6,\mathbf{y}_0,\mathbf{y}_1,\cdots,\mathbf{y}_{t-1})$$

 $\mathbf{y}_0$  is a special end-of-sentence (<EOS> = start-of-translation) token

### Transformer Layer With Masked Attention





# Types of Transformers

#### **Decoder-only**

Masked auto-regressive prediction

#### **Encoder-only**

No prediction, just understanding

#### **Encoder-Decoder**



## Types of Tokens

#### **Tokens**

- words or sub-words (tokenization)
- visual (e.g. image patches)
- discrete or continuous



### Applications of Transformers - TL;DR

Transformers are suitable language models

Auto-regressive next word prediction

Efficient parallel training through teacher forcing

Transformers process many forms of tokens