The Transformer Architecture

Recap: Multi-Head Attention

h heads, each with a set of linear projections

Additional linear projection to map to output dimension

$$egin{bmatrix} \operatorname{Attention}(\mathbf{X}\mathbf{W}_{Q,1},\mathbf{X}\mathbf{W}_{K,1},\mathbf{X}\mathbf{W}_{V,1}) \ dots \ \operatorname{Attention}(\mathbf{X}\mathbf{W}_{Q,h},\mathbf{X}\mathbf{W}_{K,h},\mathbf{X}\mathbf{W}_{V,h}) \end{bmatrix} W_O$$

 Good at mixing information across multiple tokens

To represent each element in higher-dimensional space, we need to combine MHA with MLP

Combining MHA With MLP

Issue: vanishing gradients and activations

Solutions:

- residual connections
- normalization

Transformer Layer

MHA + MLP + residual connection + LayerNorm

Transformer Layer: Post-Norm vs. Pre-Norm

Post-Norm (in the original Transformer 1.) **Pre-Norm** 2.

- 1. Vaswani, et al. "Attention is all you need." NeurIPS 2017 🔁
- 2. Xiong, et al. "On layer normalization in the transformer architecture." ICML 2020 🔁

Transformer

Inputs: a set of tokens $\{\mathbf{x}_i\}$

Outputs: another set of tokens $\{\mathbf{y}_i\}$

Simply a stack of N transformer layers

Transformer

Inputs: a set of tokens $\{\mathbf{x}_i\}$

Outputs: another set of tokens $\{\mathbf{y}_i\}$

Simply a stack of N transformer layers

Applying Transformers to Sentiment Analysis

Examples:

My kid likes this movie

□ My kid does not like this movie

Prepend one more "classification" token [CLS]

The Transformer Architecture - TL;DR

Transformer layer = MHA + MLP + LN + residual connection

A Transformer is a stack of N transformer layers