The Transformer Architecture



Recap: Multi-Head Attention

h heads, each with a set of linear projections

Additional linear projection to map to output dimension

Attention(XWg 1, XWgk 1, XWy 1)
z Wo
Attention(XWq 1, XWg 1, XWy, )

v Good at mixing information across multiple
tokens

To represent each element in higher-dimensional
space, we need to combine MHA with MLP
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Combining MHA With MLP

Issue: vanishing gradients and activations

Solutions:
= residual connections

= normalization
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Transformer Layer

MHA + MLP + residual connection +
LayerNorm
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Transformer Layer: Post-Norm vs. Pre-Norm

Post-Norm (in the original Transformer?.) Pre-Norm2
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‘ Multi-Head Attention (MHA) ’

1. Vaswani, et al. "Attention is all you need." NeurIPS 2017 [Z]

2. Xiong, et al. "On layer normalization in the transformer architecture." ICML 2020 [Z] 5/9


https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2002.04745.pdf

Transformer

Inputs: a set of tokens {x;}

Outputs: another set of tokens {y;}

Simply a stack of N transformer layers

& x

embed

N-lLaver T¥ansformer_
Transformer Layer 1

}

Transformer Layer 2

I
i

Transformer Layer n

6/9



Transformer

Inputs: a set of tokens {x;}

Outputs: another set of tokens {y;}

Simply a stack of N transformer layers
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Applying Transformers to Sentiment Analysis
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Prepend one more "classification" token [CLS] \ /

N-layer Transformer

linear

v

© positive

8/9



The Transformer Architecture - TL;:DR

Transformer layer = MHA + MLP + LN + residual connection

A Transformer is a stack of N transformer layers
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